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Abstract

The main goal of the research presented was to determine the differences between a plasma field and neutral

field flow structure (both mean and turbulent effects) for varying Mach number. The overall objective was

to describe the effect of radio frequency capacitively coupled plasma on the flow features of compressible

axisymmetric jets in Nitrogen. Three flows were investigated: perfectly expanded jets, highly underexpanded

jets, and jets created by a constant-diameter nozzle which produced developing pipe flow. High subsonic to

supersonic pressure ratios were investigated to determine the influence of compressibility.

Particle image velocimetry was used to quantify the mean and turbulent fluctuations of velocity in the

jet flow field. The tracking of seed particles in rarefied and compressible jets was characterized by compar-

ison with particle models and from mean velocities obtained by molecular tagging velocimetry. Periodic,

large scale structures were forced into the jet field and convective velocities were measured by tracking the

structures. The plasma fields were measured to characterize the visible light emitted and rotational and vi-

brational temperatures were obtained by model matching to spectra recorded of the second positive system

of diatomic Nitrogen.

The plasma did influence the mean and turbulent velocity profiles of the jets tested - allowing the jet core

to penetrate further downstream. Large scale structure tracking indicated an increase in convective velocity

of up to 5%. Heating of the shear layer by the plasma field was believed to bias the convective velocity

towards the jet core by increasing the speed of sound in the shear layer. Rotational temperatures taken by

model matching of spectroscopy data indicated shear layer heating which supports an equivalent increase in

convective velocity as was measured in large scale structure tracking. In perfectly expanded jets, turbulent

kinetic energy decreased along the jet centerline by 7% to 14% and were not influenced by compressibility

which is consistent with increased jet penetration. However, in pipe-flow jets the centerline turbulent kinetic

energy decreased at low equivalent Mach numbers, reversing to slight increases for equivalent Mach numbers

over 1.4.
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Chapter 1

Background

This research sets out generally to find the influence of plasma on compressible turbulence. Compressible

turbulence in plasma touches many fields of interest. Vehicles such as the space shuttle experience the com-

bined effects of plasma and compressible turbulence on re-entry into the earth’s atmosphere. As we learned

in the space race of the 1960s, the stresses placed on a re-entry vehicle during the return to earth are severe

and miscalculations carry devastating consequences. Plasmas are being used also in flow control to control

separation over wings and to generate oblique shocks in jet inlets. In order to achieve an understanding of

the underlying features of plasmas and to predict the impact of those features on future designs, modeling

is required. And therein lies the strongest influence for this research - that this work provides data which

will validate modeling of this rather complicated juncture of interwoven phenomena.

The main goal of the research presented here is to determine the differences between a plasma field and

neutral field flow structure (both mean and turbulent effects) for varying Mach number. The overall objective

is to describe the effect of Radio Frequency Capacitively Coupled Plasma (RF-CCP) on the flow features of

compressible axisymmetric jets. This objective will be examined through three specific sub-objectives.

• Confirm the Measurement Technique Accurately Describes the Flow Field

• Define a Measure for Plasma Quality

• Measure the Effect of Plasma on the Flow Field

The first sub-objective is to confirm the measurement technique accurately describes the flow field.

Research indicates that atomized liquid seed particles will be small enough to accurately track the flow

dynamics of these nozzles. However, the accuracy of the particle tracking must be quantified. Measurements

taken with seed particle based tracking techniques will be compared to molecular tracer techniques to confirm

the particles accurately track the flow. Good theoretical models exist which will also be used for comparison.

One aspect of this sub-objective is the concern that the plasma may induce motion in the seed particles.

However, through observation prior to testing, the seed particles in these experiments were noted not to

be disturbed electrically or thermophoretically by the plasma field. This sub objective will be considered
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successful if two conditions are met. First, particles based velocity measurements must track the mean

flow features to within 5% of the molecular tracer based velocimetry technique. Second, the model based

approach to estimating uncertainty in turbulent fluctuations must determine that uncertainty is below 10%.

The next sub-objective is to define a measure for plasma quality. The goal of this sub objective is to

quantify a factor which can be measured independent of the flow structure to determine the influence of the

plasma on the flow structure. Success in this category will be through documenting plasma quality for all

plasma fields tested.

Measuring the effect of plasma on the flow field is the next sub-objective. This sub-objective is the

primary path to answering the test objective. Both mean and turbulent fluctuating velocity fields will be

acquired for plasma and neutral fields at the same test conditions and flow locations. Success here will be

acquiring these sets at at least two different Mach numbers for: a free shear flow, the same free shear flow

with an induced large scale structure, and an oblique shock structure.

This section begins with a review of axisymmetric jet flow structures. Then to gain a better understanding

of plasmas, this chapter will report on the mechanics of the fourth state of matter and the techniques used

in generating sustained plasma in the laboratory. The plasma fields described here are important because

many of them were encountered in testing and phenomena encountered in one type of plasma field are often

used to describe features of other plasmas.

1.1 Axisymmetric Jet

The flow field for this research focuses on axisymmetric jets, that is a jet formed by a nozzle of circular cross

section. This section will describe the characteristics of a jet and salient features exploited in the current

effort.

1.1.1 Nominal Jets

Jets are created when a pressure differential causes fluid to flow through a nozzle. After the jet exits into a

large open volume, the test chamber in this case, it is free to change its shape. This region is called a free

shear layer. It is a shear layer because the jet exiting from the orifice may have a mismatch in velocity. The

velocity mismatch causes frictional shear between the jet and the surrounding fluid in the chamber which

forms a layer of flow dominated by viscous effects.[15, 284]

Figure 1.1 shows a jet formed by a pressure mismatch between the plenum and the test chamber Po > Pe.

The jet exhausts into the the chamber initially as the jet core, then interacting with the quiescent gas in
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Figure 1.1: Flow Exiting From a Plenum into the Test Chamber Through a Nozzle

the chamber through the shear layer. The coordinate system is set up assuming an axisymmetric jet, where

x is the axial coordinate aligned with the jet exit velocity and r is the radial, or tangential flow coordinate

direction. The vertical component z is included as an indicator for some of the measurements taken in this

research. While the flow velocity measurements are taken in the x− r plane, temperature measurements are

made in the x− z plane.

For a compressible fluid, a nozzle can be contoured in such a way as to accelerate flow beyond the speed

of sound. This is accomplished by a converging-diverging nozzle, also known as a de Laval nozzle after the

Swedish inventor Gustaf de Laval. Acceleration up to the speed of sound occurs in the convergent portion of

the nozzle and while the contour should be smooth to avoid viscous separations, the velocity acceleration to

sonic conditions is relatively insensitive to the actual shape. This research effort uses a converging contour of

45◦ as described in Pope.[297] Pope also recommends very gradual contours with no seams near the throat.

Even minor contour mismatches there can cause the flow to accelerate to sonic conditions prematurely

resulting in undesired effects from shocks or separations to cascade into the divergent section of the nozzle.

The designs used in this effort avoid these issues by manufacturing the converging-diverging nozzle as one

piece to avoid seams and also provide a gentle parabolic transition from the convergent slope to the throat.

The convergent slope used here transitions to the throat through a quarter ellipse with a major axis of D?

and minor axis of D?/2. The throat is typically a short constant-diameter region which minimizes minor

variations in the choke point from affecting flow in the divergent region. The design used in this effort are

of a constant-diameter cylinder, one throat diameter D? long. Once the flow is choked, the trend of fluid

velocity with diameter reverses. Now for increasing nozzle diameter, the fluid velocity accelerates. This

divergent portion of the nozzle is where the jet reaches supersonic conditions. Figure 1.2 shows a cut-away

of an axisymmetric jet.[14, 226, 284]

3



Figure 1.2: Cut-away View of an Axisymmetric Converging-Diverging Nozzle

The speed of sound a, for an ideal gas is determined by a =
√

γRT , where γ and R are the ratio of

specific heats and gas constant for the gas, respectively. The static temperature T varies as a function of the

fluid velocity and the total temperature of the fluid at that point. To determine the static temperature, some

assumptions are required. Therefore, assuming the flow process occurring in the nozzle is both adiabatic

(by neglecting heat transferred into or out of the flow from the nozzle) and reversible (by neglecting the

effects of frictional losses), then the isentropic relations for an ideal gas can be rearranged to describe the

equivalent exit conditions of the jet.

Mi =

√√√√ 2
γ − 1

[(
Po

Pe

)(γ−1)/γ

− 1

]
(1.1)

Ti =
To

1 + γ−1
2 M2

i

(1.2)

In these equations, Po and Pe are the plenum and chamber pressures, respectively, and To is the plenum

temperature. The plenum is designed to provide a settling chamber which reduces the turbulence and

velocity fluctuations associated with providing the high pressure gas required to generate nozzle flow. The

gas velocity in the plenum is very low due to its large cross-sectional area and therefore plenum measurements

approximate the total pressure Po and total temperature To nicely. For the remainder of this report, plenum

conditions are subscripted by ‘o’ and infer the approximate measurement of total conditions of the gas

upstream of the nozzle. The subscript ‘i’ is used to indicate that the calculated flow conditions are assumed

to be isentropic, resulting in the moniker equivalent Mach number for Mi. Nozzle inefficiencies result in
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losses which drive the actual Mach number lower than equivalent predictions and subsequently the measured

static temperature of the actual jet is usually higher than Ti. By manipulating the conservation of energy,

a prediction of the exit velocity of a jet can be found based entirely on the measurements of Po, Pe and To.

Ui =

√√√√2CpTo

[
1−

(
Pe

Po

)(γ−1)/γ
]

(1.3)

Where Cp is the coefficient of specific heat at constant pressure for the gas, related to the gas constant, R,

by Cp = γR/(γ − 1).[14, 297]

If the exit velocity Ue for the jet is measured, then the equivalent approximations can be improved by

now using the actual exit velocity to estimate the exit Mach number and temperature. This procedure

begins with manipulating the conservation of energy to find an estimate of the exit temperature based on

the measured plenum temperature and the exit velocity.

Te = To −
U2

e

2Cp
(1.4)

This estimation assumes that the total temperature remains constant traveling through the nozzle. Then

the exit Mach number is estimated by rearranging the isentropic relationship for temperature.

Me =

√
2

γ − 1

(
To

Te
− 1
)

(1.5)

Where the estimate for static temperature Te is used from Equation 1.4.[15]

The concept of a geometric Mach number is now introduced as the Mach number which would be achieved

based on the area ratio (or nozzle diameter ratio) between the throat and the exit of the nozzle and is Mg

in Equation 1.6. The ratio of throat to nozzle diameter is set by the desired geometric Mach number.

(
De

D?

)4

=
1

M2
g

[
2

γ + 1

(
1 +

γ − 1
2

M2
g

)](γ+1)/(γ−1)

(1.6)

The desired mass flow then determines the throat diameter, leaving only the exit diameter as a function of

Mg.

However, the divergent portion of the nozzle design is more complicated than a simple geometric ratio. In

addition to accelerating the flow through a monotonic increase in nozzle diameter, the contour of the nozzle

determines the profile of the exit velocity. In order to achieve uniform exit velocity, where the velocity across

the jet exit is constant and aligned with the nozzle centerline, the method of characteristics is employed. For
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this research, a software utility developed by Prof Addy at the University of Illinois, Urbana-Champaign -

and later modified by Prof Samimy at The Ohio State University applies the method of characteristics to

achieve uniform exit velocities with the desired geometric Mach number.[15, 226, 284]

The effects of boundary layer growth through viscous gas interactions with the nozzle wall are not

accounted for in the method of characteristics solution. The boundary layer is a thin layer of fluid which

is slower than the core nozzle velocity and influences the desired exit velocity by effectively decreasing the

usable cross-sectional area of the jet. The result is a lower measured Mach number than desired at the

exit of the jet. A slight increase in geometric Mach number (about 10%) is applied as a correction for the

boundary layer.

1.1.2 Off-Nominal Jets

Experimentally, the process of matching the actual pressure ratio to a nozzle is somewhat iterative in

nature. The boundary layer growth modifies the jet’s effective area ratio. A jet driven at a pressure ratio

(Equation 1.1) corresponding to the geometric Mach number of the nozzle will result in jet exit velocities

which are not perfectly aligned with the nozzle centerline. The misaligned flow reverberates through the jet

in a series of reflected expansions and compressions which contract or expand the jet boundary.[14, 228, 284]

Figure 1.3 shows the four cases encountered in matching the pressure ratio to the actual nozzle. Each of

the panels show a schematic of the jet with the jet boundary and any compression, expansion or shock waves.

Note that the interaction of the wave structure is more complicated than sketched here, as the concept of

waves reflecting off the jet boundary and off each other is the one of importance in the illustration. The

sketches are based on drawings found in Pai [284], Love [228] and Anderson [14] where expansion and

compression waves are also shown as straight lines for clarity.

Panel (a) is the subsonic case in air, where the pressure ratio Po/Pe < 1.893. For pressure ratios below

this threshold, the jet will not produce supersonic flow. For this research, some subsonic jets were produced

by this technique. Increasing the pressure ratio over the threshold develops a supersonic jet as seen in panels

(b), (c) or (d). The goal in most cases is the perfect expansion in panel (b). In this case, the pressure ratio

applied matches the effective area ratio and accounts for the effect of the boundary layer. If done perfectly,

the jet which exits at this condition is free of shocks and produces a jet of uniform exit velocity Ue, with a

thin boundary layer. In practice, the match is less than perfect and minor variations are seen in exit velocity

across the width of the nozzle and very weak expansion and compression waves produce a slight oscillation in

the core exit velocity traveling out of the jet, usually around 1% of the mean exit velocity. The off-nominal

cases in panels (c) and (d) are for gross pressure mismatches. In both cases the jets develop radial velocity
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(a) Perfectly Expanded Subsonic Jet (b) Perfectly Expanded Supersonic Jet

(c) Overexpanded Jet (d) Underexpanded Jet

Figure 1.3: Schematics of Nominal and Off-Nominal Jets in Air

components of significance and stronger oscillations in the centerline velocity. To match the pressure ratio,

measurements of the velocity field near the jet exit must be taken through an iterative procedure. The

search begins near the geometric pressure ratio and examines initially large deviations to narrow the search

range. The range is consecutively decreased through smaller variations in pressure ratio until the velocity

field shows a matched condition.[14, 284, 297]

Rarefied Jets

In most fluid dynamics problems, it is assumed that there are so many molecules present in a volume of

interest, that continuum dynamics can be applied to create transport coefficients which change smoothly in

that volume. In rarefied gases that model breaks down. A rarefied gas has molecules, which on the mean,
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are separated by a distance which is on the order of magnitude of the length scale of interest. The mean

separation distance of the molecules is referred to as the mean free path λ,

λ =
kTf√
2σ2Pf

(1.7)

where k is the Boltzmann constant (1.38× 10−23J/K) and σ is the molecule diameter, which is 407 pm for

air. The temperature and pressure of the fluid (Tf and Pf , respectively) are used as a substitution for the

local fluid density by quantities which are more easily estimated for this scenario. The mean free path of

air at standard atmospheric conditions is 69 nm. For the air to be considered rarefied, the characteristic

length of interest needs to be on the order of that mean free path - making it a factor for nano-devices or the

smallest of seed particles. However, when looking at jets exhausting into a vacuum, the situation changes.

For a gas still at 295 K but now at 5 torr, the mean free path is 8.3µm, 2 orders of magnitude larger. The

flow is still not rarefied relative to a jet diameter of 1 cm, but standard seed particles used for flow tracers in

many velocimetry techniques are now firmly in the rarefied regime. The Knudsen number is commonly used

to determine the boundary of rarefaction and is Kn = λ/L, where L is the characteristic length. Rarefaction

dominates the local dynamics as the Knudsen number increases to unity and beyond. The Knudsen number

can be recast into Reynolds number Re and Mach number shown in Equations 1.8 through 1.10.

ReL =
ρfUL

µf
(1.8)

M =
U√

γfRfTf

(1.9)

KnL =
√

πγf

2

(
M

ReL

)
(1.10)

Where the local gas properties ρf , µf , γf and Rf are the density, viscosity, ratio of specific heats and the

gas constant, respectively. The local velocity is represented by U and could be a relative velocity between

a particle of interest and the fluid it travels in, or between the fluid and a stationary boundary in the

flow.[77, 339]

Given the discussions trend toward the focus on small tracer particles, one rarefied flow feature of interest

is thermophoresis. Thermophoresis is the force placed an object in a quiescent gas with a thermal gradient.

Under normal conditions, the object in the flow is so large, relative to the thermal gradient that motion

does not occur. However, in the instance of small tracer particles which see thermophoretic forces, this issue

must be dealt with carefully. For a small particle in a temperature gradient, the molecular collisions on
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the warm face are more likely than on the cold face of the particle. Therefore, the thermophoretic force

is one which drives a tracer particle away from warm gas toward cold gas. Thermorphoresis effects are

reduced significantly when the fluid is in motion, as the thermophoretic forces are small relative to forces on

the tracer particles by the fluid in motion. However, the question of the effect of thermophoresis must be

answered when using tracer particles in rarefied flow.[54, 339]

Figure 1.4: Schematic of the Shock Structure of a Highly Underexpanded Jet Exiting from a Sonic Orifice

On example of a rarefied flow is the highly underexpanded jet. Figure 1.4 shows the structure of a highly

underexpanded jet. The jet is formed by flow exiting out of a sonic orifice, which is the location where the

flow chokes. The jet exits into a relative vacuum and forms an expansion region and accelerates rapidly in

the chamber with static pressures dropping well below that of the chamber. Next, the flow forms a barrel

shock structure where the static pressure jumps to match the chamber pressure. This pattern will continue

in a chain of shocks if the pressure ratio is high enough. An interesting place to examine the flow is directly

downstream of the Mach disk. Many experiments [1, 8, 46, 78, 79, 106, 115, 143, 209, 220, 221, 283, 386]

have been performed on this flow and empirical predictions of the shock location are known. Crist [100]

provides a relation for the location of the Mach disk xM , based on orifice diameter De and pressure ratio

Po/Pe.

xM = De

√
Po

2.4Pe
(1.11)

Just downstream of the Mach disk, the flow is subsonic, but the flow which surrounds the disk passed through

a reflected oblique shock and is still supersonic producing a slipstream in the flow.[228]
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Figure 1.5: Mean Velocity Profile of an Axisymmetric Jet

1.1.3 Free Shear Layers

The baseline flow field of this investigation is the axisymmetric jet into a quiescent chamber. To understand

the baseline flow better, examine Figure 1.5, which represents the flow of an ideally expanded supersonic

jet with matched pressure between the test chamber and the nozzle exit flow. The jet exits from a plenum

chamber, through a convergent divergent nozzle designed to provide reasonably uniform flow at the exit. The

first mean velocity profile (x/D=0) is that of the ‘top-hat.’ The top hat represents the core of the jet, which is

uniform. As the jet interacts with the still air in the test section, a shear layer develops between the core flow

and the surrounding air due to viscosity. In this region, represented by the stations located at x/D=1 and 5,

the core flow is still present, but is decreasing in width. Further downstream, in this example at x/D=10 and

beyond, the shear layer has overtaken the entire jet. The core flow is no longer present here and the centerline

mean flow speed represents the maximum. The flow continues to develop as it travels downstream. The flow

is typically fully developed between 5 and 8 jet diameters (D) downstream. Fully developed flow is marked

by self-similarity, where the flow features are no longer dependent on the downstream distance. Troutt and

McLaughlin[376] found the mean velocity profiles collapse to a half-Gaussian represented in Equation 1.12

on the next page.[328, 367, 383]
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U(η)
Uo

=

 e−2.773(η+0.5)2 for η > −0.5

1 for η ≤ −0.5
(1.12)

The half-Gaussian profile accounts for the potential core region, as well as the self-similar region. The

similarity parameter η, is related to the physical coordinate of radius off the jet centerline through the

shear layer thickness δ and r 1
2
. The parameter r 1

2
is the radial position where the flow speed is 50% of the

maximum (0.5Uo) by r = ηδ + r 1
2
.

Figure 1.6: Streamlines Between a Vortex Pair in the Convective Reference, Adapted from Coles[93]

To consider the effect of large scale structures on free shear flows, a frame of reference must be developed.

This reference frame is constant with respect to the flow of interest. The convective reference frame is the

reference in which the largest turbulent structures move relative to the jet exit. To develop the theory behind

the convective frame Bogdanoff[58] and Papamoschou and Roshko[287] considered a pair of counter-rotating

vortices which represent this large scale turbulent structure. In a frame of reference traveling with the vortex

pair, there is a stagnation point between them. Two streamlines, one traveling from each vortex collide at

this stagnation point as depicted in Figure 1.6. Therefore, since the total pressure is fixed, the following

relationship holds true - assuming the flow along the streamlines are isentropic.[11, 93, 344]

(
1 +

γ1 − 1
2

(U1 − Uc)2

γ1R1T1

)γ1/(γ1−1)

=
(

1 +
γ2 − 1

2
(Uc − U2)2

γ2R2T2

)γ2/(γ2−1)

(1.13)

In Equation 1.13 the convective speed is Uc and the flow speeds for the two flows are U1 and U2, respectively.

Some useful relations come from manipulating the above relation (assuming γ1 = γ2), and are presented in

Equations 1.14 and 1.15

Mc = Mc1 = (U1 − Uc)/a1 = Mc2 = (Uc − U2)/a2 (1.14)
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Uc =
a1U2 + a2U1

a1 + a2
(1.15)

For the case of a free jet into quiescent air, this relationship simplifies considerably. Since the medium of

both flows is the same, γ1 = γ2 and also U2 = 0. These simplifications yield the following relationships:

Uc = U1/(
√

T1/T2 + 1) and Mc = Uc/a2 = U1/(a1 + a2).[352]

Differences from this ideal convective reference were observed.[71, 154, 163, 192, 287, 288] Researchers[86,

90, 142, 120, 271] surmised the vortex structure developed a three dimensional helicity which decreased the

shear layer growth rate. Further discovery into the turbulent structure occurred when flows of involving

supersonic jets into quiescent air were measured. In this compressible shear layer, the large scale structures

were less evident. The difference was conjectured to be an effect of compressibility, namely turbulent

eddies moving at supersonic speeds in the shear layer were forming shock waves which invalidated the

isentropic assumption and worked to quickly breakdown the large scale structures. To account for this

phenomenon, Murakami and Papamoschou[278] developed an empirical correction shown in Equations 1.16

through 1.18.[11, 67, 117]

Uc corrected = U1 − a1Mc1 corrected (1.16)

Mc1 corrected = Mc +
−dMc√

1 + (a1/a2)2
(1.17)

dMc = 1.25 ln(Mc) + 1.11 (1.18)

Figure 1.7: Turbulent Regions of the Axisymmetric Jet
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The turbulent axisymmetric jet has received considerable investigation. Figure 1.7 shows the progression

of turbulence in the axisymmetric jet. The jet begins with either a laminar or turbulent thin shear layer at

the exit of the jet (depending on the boundary layer created in the nozzle). Hussain and Clark [187] state

that the initial region is dominated by the irrotational jet core and is defined by two length scales, the jet

diameter and the initial vorticity thickness. This core region persists for roughly one jet diameter. The shear

layer grows in the transition region, feeding off of the momentum in the potential core. Yule [398] observed

that the jet becomes dominated by turbulence near the point of core breakdown, roughly 4 jet diameters

from the nozzle exit. Experiments [191, 389, 398, 403] have discovered that the mean velocity profile reaches

self similarity first, roughly 8 to 15 diameters downstream. Self similarity implies the profile is independent

of distance from the nozzle exit, e.g. the velocity profiles collapse onto one scaled curve. However, the

turbulence velocity fluctuations take longer to reach full development, up to 40 jet diameters in the case of

higher order fluctuation moments.

Researchers [45, 109, 134, 188] agree that above Reynolds numbers of ≈ 500 (based on nozzle exit

diameter) that the axisymmetric jet is unstable and always transitions into a turbulent flow. And while the

axisymmetric jet is always considered turbulent, the nature of turbulence is related to the Reynolds number.

Dimotakis [109] found that two turbulence regimes exist for axisymmetric jets. For ReD higher than 20,000

the turbulent fluctuations of the jet were very fine, resulting in a distribution of the velocity fluctuations

tightly centered around the mean. When the Reynolds number falls below 20,000 however, the turbulence

was dominated by large scale structures which spread the distribution of velocity fluctuations significantly

farther from the mean value. The dominance of large scale structures at low Reynolds number decreased

the effectiveness of the shear layer mixing.[376]

The variance in turbulence structure with Reynolds number has been reported by others [45, 66, 71, 73,

101, 400] and is tied closely with the instability modes of the axisymmetric jet. Figure 1.8 illustrates the

dominant instability modes found in axisymmetric jets. Researchers [73, 101, 107, 276] have observed that

an axisymmetric jet develops initially like a planar free shear flow with a roll-up into torroidal vortex rings

initiated at the lip of the jet exit. These vortex rings are the axisymmetric mode. Corcos [96] postulates that

the rings of this mode are unstable to three-dimensional perturbations. The vortex rings respond quickly to

the disturbances and interact, forming vortex pairs and become three-dimensional. These vortex interactions

transition into the 3-D helical mode. The transition point from axisymmetric to helical modes is sensitive

to the jet’s initial conditions; the initial vorticity thickness, whether the initial boundary layer was laminar

or turbulent and Reynolds number. The thicker the initial vorticity thickness, it has been observed [66]

that helical transition moves toward the nozzle exit. Some researchers [101, 191] compared initially laminar
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(a) Axisymmetric Mode (b) Helical Mode

Figure 1.8: Schematic of Dominant Jet Instability Modes

shears to shear layers which were tripped into turbulence in the nozzle and found that the turbulent shear

layers transitioned into the helical mode almost immediately. Finally, increasing Reynolds numbers have

been observed [73, 101, 276, 398] to move the initiation of the helical mode towards the nozzle exit as well.

It has been reported by Zaman and Hussain [403], that these instability modes are sensitive to particular

frequencies. The axisymmetric mode favors frequencies with a Strouhal number StD = fD/Ue of 0.3, while

the helical mode is driven for frequencies near StD = 0.85 - where f is the forcing frequency, D is the

nozzle exit diameter and Ue is the exit velocity. This frequency dependence has been investigated by other

researchers as well.[73, 101, 188]

Compressibility affecting the turbulent structure of a free shear layer was first pointed to by Brown and

Roshko [71]. Their experiment looked at large scale structures in a planar mixing layer with variations in

flow speed and density. They noted a change in shear layer spreading rate for change in compressibility and

ruled out the change in density between the two jets as the source, pointing to a effect only of Mach number.

For planar flows the decrease in shear layer growth rate was confirmed by experiments.[86, 154, 322, 347]

It was reasoned by Papamoschou and Roshko [287], that the decrease in growth rate was due to increased

stability provided by a decreased region of influence at supersonic speeds. Given the parallels between planar

mixing layers and the core region of the axisymmetric jet, the trend of decreasing growth rate for increasing

convective Mach number was observed in axisymmetric jets.[89, 142, 162, 216]

The stability of supersonic axisymmetric jets was investigated by Tam and Hu [363]. They found three

instability modes. The first was the Kelvin-Helmholtz instability which generates into the axisymmetric
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mode. This mode was shown to be neutrally stable when the flow was assumed inviscid, but for finite shear

layers this mode dominates the transition for Mach numbers below 4.4. The other two modes occurred

in a bifurcation. The subsonic wave branch was found never to dominate the flow, while the supersonic

wave branch dominated high supersonic flows. Fourgette, Mungal and Dibble [142] investigated this theory

experimentally and could not observe the axisymmetric 2-D mode. Gutmark, Schadow and Yu [162] observed

that shear layer thickness played a role in which mode was dominant and the helical mode dominates for lower

thicknesses while both modes were on par for increasing shear thickness. Gutmark, Schadow and Bicker [161]

also discovered that off-nominal supersonic jets exhibit increased growth rates over their perfectly expanded

counterparts. They theorized that acoustic feedback from the shocks were interacting upstream at the nozzle

lip to energize earlier transitions. Finally, the influence of heating on supersonic jet cores was observed by

Lau.[214] Lau found that heating the jet core caused the potential core region to retract, while increasing

Mach number caused the core region to extend further downstream.[164]

In addition to theoretical and experimental investigations of the turbulent axisymmetric jet, many numer-

ical studies have also been accomplished. Corcos and Lin [96] used a linear perturbation model to augment

their theoretical approach to instability modes. Acton [3] investigated the results of forced jets by Large

Eddy Simulation (LES) of the axisymmetric mode and found good agreement to experiment suggesting the

initial development of transition was largely influenced by the torroidal structure. Martin and Meiburg [242]

used a vortex filament model and also found good agreement with subsonic growth rate. Compressibility

on jet structure has also been investigated numerically. Investigators [144, 270] have used Direct Numeri-

cal Simulation (DNS) of the near-field of supersonic jets to examine the production of sound waves. And

Aupoix [39] investigated turbulence models to improve the prediction of spreading rate reduction for su-

personic jets. While this is by no means an exhaustive list of works in the numerical realm, it is meant to

illustrate that this area is rich with possibility for further investigations.

In a departure from conventional jets formed by converging-diverging nozzles, Bradshaw [66] used a

constant-area tube to look at axisymmetric transition. Additionally, Ferdman, Otugen and Kim [133] used

a straight pipe nozzle and found increased turbulence in the jet. Therefore, to increase the turbulence in the

core flow of a jet, the characteristics of pipe flow can be utilized. To accomplish this, a long, constant-diameter

tube can be formed downstream of the nozzle. This tube produces pipe flow with turbulent intensities in the

jet core on the order of those found in the shear layer. Tube lengths which are 50 times the tube diameter

are considered fully developed, where the velocity profile is no longer a function of distance traveled down

the tube. Shorter tubes produce a jet of developing pipe flow, which feature increased turbulent fluctuations

in the jet core, but may still exhaust into the chamber with a top-hat profile.[328, 383]
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A simpler approach to create developing pipe flow, is to use an aerodynamic nozzle at the beginning of a

constant-diameter tube. The flow exhausting from a constant-diameter tube achieves supersonic conditions

through what is suspected to be an aerodynamic nozzle formed by a separation bubble created at the tube

entrance in the plenum chamber. Aerodynamic nozzles have been studied previously in annular ejector flows

in constant-diameter mixing channels. Predictions of the occurrence of aerodynamic nozzles in ejector flows

were initiated by Fabri and Siestrunck [130] and improved by Chow and Addy [82]. It was postulated that

the separation regions commonly formed in aircraft inlets, can occur at the right angle formed at the inlet

to the constant-diameter tube. Then, that separation region chokes the flow and accelerates it to supersonic

speeds A supersonic jet flow formed by a constant-diameter tube will be studied in this research.[35, 114, 165]

1.2 Plasma

Since most of this dissertation depends on measuring the influence of a jet passing through a plasma field,

and since plasma fields are a relatively ethereal topic, this section describes the important properties of

plasmas. Some additional plasma topics are covered here to help decipher the current types of plasma

undergoing research in the field of turbulence.

A plasma is an ionized fluid. It is considered the fourth state of matter, plasmas typically occur in the

gaseous phase where ions, neutral particles (atoms or molecules) and free electrons are unconstrained in their

translational motion. The plasmas of interest in this study, ones which can be produced in the laboratory

(ruling out thermo-nuclear fusion), are considered electrically quasi-neutral. These plasmas are called quasi-

neutral because in the region of interest there is a relative balance in charge between free electrons and ions.

However, since the plasma state contains free electrons and ions, the conductance is high (higher than gold

in some cases) and a plasma is able to create an electrical circuit and is influenced by electric or magnetic

fields. Table 1.1 on the following page summarizes the unique properties of plasmas.[5, 145]

The effect of plasmas on high speed flow is to create free electrons, and to pump energy into the vibrational

modes of diatomic molecules. The rotational and translational energy of these molecules remains in equi-

librium and thus the flows are considered ‘cold’ as the temperature which defines the random translational

motion of the molecules is relatively constant.[5, 145]

Etotal = Etrans + Erot + Evib + Eelec (1.19)

This effect is similar to a highly expanded nozzle. The nozzle expansion produces a rapid drop in temper-

ature as the mean motion of the flow accelerates toward the exit. The rotational and translational motion
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Table 1.1: Unique Plasma Properties

Property Description
Ionized Particles Charged particles existin high enough

concentration that Coloumb forces effect the
gas kinetics.

Thermal Nonequilibrium The ability of a plasma to maintain
non-Boltzman energy distributions by trapping
energy in elevated vibrational quantum states.
Thermal equilibrium exists in a plasma when
translational energy is elevated to near that
of the energized free electrons.

Quasi-Neutrality The charged particles maintain a balance on a
local scale.

Electrostatically Ideal Coloumb forces are typically negligible in
evaluating continuum properties.

of the molecules is in equilibrium through the expansion, as each molecule transfers energy between their

neighbors through elastic collisions. The transfer of rotational and translational energy between particles is

very efficient and energy is transferred effectively after only a handful of collisions. Thus, molecules which

are moving quickly are more likely to strike adjacent molecules and transfer energy to them.[5, 145]

However, the vibrational states of these molecules remain in the state the plenum conditions, which was

a much higher energy state. The collisional transfer of molecular energy between rotational/translational

states and vibrational or electric energy states is inefficient and requires at least an order of magnitude

more collisions to transfer energy out of the now elevated vibrational states. The vibrational energy remains

trapped in the molecules and cannot be used in flow acceleration, the flow is considered ’frozen’ in this state.

The effect of a plasma is to elevate the vibrational modes of these diatomic molecules. If the plasma is created

in a flow which is supersonic or hypersonic, the length scale required to achieve vibrational equilibrium with

the translational and rotational modes is typically longer than the test section. Thus, the flow is similarly

frozen.[5, 145]

1.2.1 Thermal Equilibrium

A plasma in thermal equilibrium is marked by ‘high’ (atmospheric) pressure and high temperature. This

type of plasma is referred to as a thermal plasma. Examples of a thermal plasma include lightning and

nuclear fusion. In a plasma where pressures are lower, which results in less frequent energy distributing

collisions and thus resulting in a disparity between free electron temperature and neutral gas temperature.

This temperature disparity in the plasma is called thermal non-equilibrium. An example of this type of

plasma is the fluorescent light bulb. The non-equilibrium of molecules may be further segregated into the
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translational, rotational, and electric energy modes. Particles can exchange energy with each other through

collisions or interaction of Coulomb forces. The particle collisions can be described as elastic inelastic or

super elastic. Elastic collisions only involve a transfer of kinetic energy between collision particles. Inelastic

collisions involve transfer of kinetic energy into internal energy. Conversely, super-elastic collisions transfer

internal energy back into kinetic energy.[145]

Elastic collisions involve a transfer of translational energy where particle momentum is conserved between

the particles. An inelastic interaction involves additional transfers of energy into the electric, rotational or

vibrational energy state and thus translational momentum is not conserved even though energy conservation

applies. It is typically assumed translational and rotational energy are in equilibrium in a plasma and the gas

temperature represents both of these particle motions. Non-equilibrium plasma will be the type of plasma

used in this research due to the ability to contain the lower gas temperatures in the laboratory.[145]

A plasma is created in a non-charged gas by energizing atoms or molecules into quantum levels high

enough for the liberation of an electron. Then through the collision of this highly energized free electron and

another molecule (or atom) in a moderately elevated quantum energy state where more electrons are released.

Under conducive conditions, this process blossoms in a condition called an electron cascade. Most plasma

generation techniques are marked by initially high input energy levels to reach cascade conditions, followed

by reduced input energy to maintain a plasma with a well populated free electron concentration.[145]

An equilibrium plasma is one where the gas temperature T0 is near that of the electron temperature

Te (for most plasmas, Te ≈ 1eV is used for estimation). For a nonequilibrium plasma, the ratio of Te/T0

can be as high as 100. In low pressure plasmas, the neutral gas looses heat to the chamber walls faster

than the electron gas can transfers heat into it. Gas pressures below roughly 30 torr are needed to provide

enough conductive heat losses for static gas plasmas. Above this pressure, a nonequilibrium plasma can be

maintained through fluid velocity to increase the conductive heat transfer and to lower the residence time

of the gas in the plasma field. The amount of energy transferred into a plasma has an upper bound which

can be estimated from Equation 1.20

T0 − 300[K]
300[K]

=
Ev(1− η)
Cp300[K]

(1.20)

where η is the energy efficiency of the plasma process, Cp is the specific heat coefficient at constant pressure,

Ev is the specific energy input and T0 is the gas temperature.[145]
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1.2.2 Quasi-Neutrality

One of the qualitative definitions of a plasma is quasi-neutrality. In a localized sense, ions and free electron

charges are in balance. When a plasma interacts with its boundaries, the charge balance is no longer quasi-

neutral and the fluid is no longer defined as a plasma. For example, when a plasma comes in contact with a

grounded (floating potential) wall, the free electrons go to ground and leave the remaining positively charged

ions in the fluid. The ions are left behind since the electron thermal velocity is roughly 1000 times faster

than the ion thermal velocity,
√

Te/m �
√

Ti/M . This positively charged portion of the fluid is called the

plasma sheath. The thickness of the sheath is typically on the order of three Debye radii, and can only

exist if there are ions which have energy which is equivalent to the electron temperature. The Bohn sheath

criterion codifies this as ui ≥ uB =
√

Te/M , where m is the electron mass and M is the ion mass.[145]

The Debye radius is characteristic length of plasma quasi-neutrality. Large values of the Debye radius

(where rD � R R being the characteristic length of change of electron concentration) signify large separations

of electrons from the ions and the breakdown of the quasi neutral assumption. Typically the plasmas dealt

with in this research can be considered quasi-neutral with rD � R.[145]

rD =
√

Teε0

e2ne
= 742

√
Te[eV ]

ne[cm−3]
[cm] (1.21)

Just as the Debye radius is the characteristic length, the characteristic time scale of the plasma is

determined by the Langmuir frequency. The Langmuir frequency is the time required for an electron to

travel one Debye radius at the thermal electron velocity to provide charge screening to a perturbation in the

external electric field.[145]

ωP =

√
e2ne

mε0
= 5.65× 104

√
ne[cm−3][cm] (1.22)

1.2.3 Electrostatically Ideal Plasma

In an interaction between two electrostatically neutral particles, particle motion is governed by intermolecular

collisions - forces which only become important when particles are in close proximity to each other. The

interaction of two charged particles is governed by Coulomb law and affects particle motion over much longer

distances than neutral particle collisions. An electrostatically ideal plasma is one in which free electrons and

ions travel in straight lines. This description implies the kinetic energy of the particles is much higher than

the interparticle potential energy and is neglected. Only the most extreme ionized particle densities can

generate non-ideal conditions. These extreme plasmas are not found in nature and are very difficult to

contain in the laboratory currently. The assumption of electrostatically ideal plasmas simplifies analysis.
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Some of the results provided from this assumption are described next.[145]

Waves and oscillations in plasmas are enhanced compared to neutral gases due to the additional long

distance effects of Coloumb forces created by local potential fields. The dispersion relation for electrostatic

plasma waves is ω2 = ω2
P + γTek

2/m, where γ is the ratio of specific heats for an electron gas and k is

the wave number. In the limit of wavelengths (2π/k) much higher than the Debye radius, the frequency

approaches the Langmuir frequency. For very high frequencies, the phase velocity of the waves approaches

the thermal speed of the electrons.[145]

Some common calculations useful in plasma design are provided in this section. Electron conductivity

can be used to estimate the electron density.

σ =
nee

2

mνen
, σ = 2.82× 10−4 ne[cm−3]

νen[sec−1]
, Ohm−1cm−1 (1.23)

Where ne is the electron density, e is the charge of an electron, m is the mass of an electron and νen is the

frequency of electron neutral collisions. Note when gas pressure is used to calculate reduced electric field

E/p it is commonly with the assumption of room temperature conditions. The gas concentration can be

calculated from n0[cm−3] = 3.295 × 1016p[Torr]. If the gas temperature T0 is not room temperature, then

use n0 in scaling E or use the following correction peff = pTact/Troom. Joule heating can be calculated from

the following relation:

P = σE2 =
nee

2E2

mνen
, (1.24)

For air at room temperature and a reduced electric field E/p = 1 − 30[V/cmTorr] the typical similarity

parameters are listed in Table 1.2. At a pressure of 5 torr then, λ = 0.06 mm and νen = 2× 1010 1/sec.[145]

Table 1.2: Room Temperature Air Plasma Properties, Adapted from Fridman[145]

Property Value
Electron Mean Free Path λp = 3× 10−2[cm torr]
Electron-Neutral Collision Frequency νen/p = 4× 109[sec−1torr−1]
Electron Conductivity σp/ne = 7× 10−14[torrcm2/Ohm]

1.2.4 Treanor Effect

The Treanor effect is important in this study because it describes the temperature distribution which is

present in non-equilibrium plasma to be studied. The effect is arrived at by way of a few simplifying as-

sumptions which can be made in the case of plasma which originates from diatomic molecules. It has been
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observed that the relaxation of vibrational energy through translation of nearby molecules (for constant

pressure) is exponentially dependant on the neutral gas temperature Additionally, diffusion of vibrational

energy is exponentially dependant on vibrational temperature. Therefore, through an Arrhenius-like sim-

plification, the relaxation of vibrational energy into translational energy (VT relaxation) can be neglected

for cold nonequilibrium plasmas since vibrational temperatures are much higher than translational temper-

atures. Additionally, if the diffusion of vibrational energy through vibrational relaxation (VV relaxation) is

considered harmonic (anharmonic VV’ relaxation is neglected) then the vibrational and translational energy

distributions are uncoupled.[145]

The biggest result of these approximations is that the gas is effectively frozen as in nozzle flow and two

temperatures describe the condition of the plasma energy state. The neutral gas temperature T0 describes

the cold fluid translational mean property and describes temperature related fluid properties such as viscosity

and specific heat. The energy stored in vibrationally excited molecules is then trapped in the vibrational

temperature, TV . Another implication of the Treanor effect is the resulting non-Boltzman temperature

distribution, which is now described by the Treanor distribution in Equation 1.25.

TV =
h̄ω

ln
(

N0
NI

) (1.25)

Where h̄ is Plank’s constant, ω represents the dispersion frequency, N0 and NI are number of molecules and

ions, respectively. The Treanor effect explains the high degree of efficiency in chemical reactions which are

stimulated by vibrational excitation of plasma fields. The Treanor effect also explains how vibrationally rich

molecules can take energy from molecules which are vibrationally excited (although at a lower state). Since

the vibrationally richer molecule is higher in VV relaxation rate than the poorer molecule, the preferred

direction of energy transfer is from the poor molecule to the rich molecule. The result of this effect is

to enhance the creation of a population inversion, where the majority of molecules are in the vibrationally

excited states. This effect additionally explains how molecules are efficiently excited to the point of radiating

photons or liberating electrons.[145]

1.2.5 Breakdown Mechanisms

The transition from neutral gas to ionized plasma is referred to as breakdown, from the early observation

of capacitive circuits with air gaps discharging in a failure due to overvoltage. Two models provide a

description of breakdown: the Townsend mechanism and the spark mechanism. Both breakdown mechanisms

are observed in this plasma research effort.
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The Townsend Mechanism describes the point at which, through increasing voltage potential across a gap

filled with a neutral gas, the non-conducting fluid breaks down - generating a plasma and carrying current.

To describe the mechanism, consider a planar gap with cathode and anode in a uniform DC voltage potential

of E = V/d, where V is the voltage and d is the gap distance. An initial electron near the cathode is liberated

and travels across the gap towards the anode. Along its path it collides with a neutral atom or molecule and

liberates another electron. Neglecting the electron affinity of electronegative gases and electrons recombining

with ions, this geometric expansion implies that each of these initial electrons generates eαd − 1 positive

ions and free electrons in an electron cascade, where α is the Townsend coefficient. Just as the electrons

move to the anode, the positive ions now migrate toward the cathode. Depending on the cathode material

properties, the ions which collide with the cathode liberate another electron, producing a secondary electron

emission which sustains the plasma. At some point, as the electric field is increased, the electron avalanche

is self-sustaining and the gas undergoes breakdown. Empirically, for air the Townsend coefficient predicting

breakdown is α/p = 15[Torr/cm]e−365[V Torr/cm]/(E/p).[145]

The spark breakdown mechanism is a very localized breakdown, as opposed to the Townsend breakdown

which fills the entire field. Spark breakdowns occur at higher gap distances and gas pressures than the

Townsend phenomenon. In this situation, an voltage across the gap increases faster than the ions can migrate

to the cathode - which creates an overvoltage. As a result, secondary electron emission can be neglected and

cathode material is irrelevant. The spark begins with a streamer which is a channel of positive ions created

in the wake of an electron avalanche caused by the overvoltage. The avalanche is strong enough to stimulate

photon radiation which causes additional avalanches nearby. The channel of positive ions grows, creating its

own electric field and attracting nearby electron avalanches into it. This channel, called a streamer grows

and quickly connects the electrodes to pass high currents and eliminate the overpotential.[145, 350]

Typically, when a neutral atom or molecule becomes excited enough, it will shed a highly energized

electron. In a plasma, this explains the high concentration of free electrons and positively charged ions.

However, the presence of certain gas elements, such as oxygen, radically alter the plasma initiation process.

Molecules with an electron affinity actually attract free electrons and become negatively charged ions. This

process enhances the ionization of the gas, as the negatively charged ion has significantly higher collision

potential than the free plasma electrons and thus the reaction rate increases in the plasma formation and

sustainment.[145]
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1.2.6 Plasma Instabilities

A plasma can transition from thermal nonequilibrium into equilibrium through an instability. A transition to

thermal equilibrium, with potentially catastrophic consequences can occur at surprisingly low input energies.

For this research effort, plasma instabilities need to be recognized and avoided to prevent equipment failure.

Plasma instabilities are characterized into two groups, striation and contraction. A striation instability is

one which causes alternating light and dark regions in the plasma. A striation does not appreciably affect the

plasma properties and will not be dealt with further in this article. A contraction instability causes the plasma

to compress into a single filament and can be a problem for the plasmas intended in this research effort.

An example of contraction instability is the thermal instability (ionization overheating). This instability

phenomenon plays on the Arrhenius-like exponential feedback found in VT relaxation. The feedback loop

initiates when a perturbation creates a locally elevated gas temperature. The elevated temperature lowers the

local gas density and therefore raises the reduced electric field (E/n0). The increase in local reduced electric

field then raises the local electron temperature which feeds directly into increased vibrational molecular

energy. The exponential dependance on gas temperature of VT relaxation rate then transfers vibrational

energy into an increased local gas temperature, which closes the feedback loop and drives the system toward

thermal equilibrium.[145]

1.2.7 Nonequilibrium Plasma Chemistry

Vibrational excitation of molecules is the most efficient way to stimulate an endothermic chemical process.

Roughly 70% to 95% of the energy in the plasma electrons can be transferred into vibrational energy in

the molecules found in air. Chemical processes have different activation energies based on which degree of

freedom is excited. For example, the energy threshold for dissociation of diatomic Hydrogen by electronic

excitation is twice that of vibrational excitation.[145]

Free electrons are typically responsible for the excitation of neutral particles in the plasma. When a free

electron collides with a neutral diatomic molecule, it can impart only negligible translational momentum,

due to the incredible difference in mass between the electron and molecule. And for many diatomic mole-

cules, rotational motion is rarely affected, as these molecules have no dipole and are difficult to influence

magnetically by the imbalance of free electrons in the local magnetic field. Therefore in non-thermal plas-

mas, it is common to treat translational and rotational degrees of freedom collectively in equilibrium with

each other and represent the mean energy distribution by the gas temperature. Electronic excitation of a

molecule by collision with a free electron requires a gigantic potential on the part of the free electron and

is rare for non-thermal plasmas. Therefore, the influence of free electrons on diatomic molecules is most

23



Figure 1.9: Energy Distribution of Excitation for Air, Adapted from Fridman.[145]

easily coupled into an increased vibrational state. Additionally, the relaxation time (time to go from a high

energy state to a low energy state) of a vibrationally excited molecule is roughly 106 times longer than for an

electrically excited molecule, which accounts for the predominance of vibrational non-equilibrium found in

frozen nozzle flows and non-thermal plasmas. Figure 1.9 shows the excitation channels for free electrons as

they are distributed in the formation of an air plasma. Diatomic molecules in particular, can be vibrationally

excited to the point of dissociation to further fuel the ion concentration in plasma generation.[5, 145]

1.3 Plasma Discharges

This section provides a summary of the most common types of plasma discharge used in both industrial and

research applications. Multiple plasma discharges are present in this research endeavor.

1.3.1 Glow

A glow discharge is a DC nonequilibrium plasma which is generated between electrodes. It is self sustaining,

which means its electron source is provided solely by dissociation in the supplied electric field and is not

augmented by electron beams or photon radiation. The glow discharge is self sustained by secondary electron

emission from energetic ion collision with the cathode. This plasma experiences the thermal instability and

to avoid transition to quasi-equilibrium this plasma is generated in low pressures, usually around 10 Torr.

The thermal instability also limits the amount of power supplied. This plasma is common to fluorescent

lighting. The glow discharge structure contains small light and dark regions which are not considered plasma

due to charge separation where Townsend breakdown and Faraday effects are prevalent near the electrodes.

Finally, a large volume of fluorescence is generated across the length of the tube in a plasma called the
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positive column. If convective heat transfer is applied through high speed fluid motion, the pressure and

applied power can be increased significantly to create a glow discharge for use in aerodynamic experiments.

If the glow discharge is confined inside a cylinder of length d0, then to maintain a thermal balance yields a

relation (Equation 1.26) for electron concentration.

ne =
2ucpmken

e2d0T0(E/p)2
(1.26)

Where in Equation 1.26, u is the flow speed through the cylinder and ken is the rate coefficient for electron-

neutral collisions. Turbulence in a glow discharge significantly increases the loss of charged particles by

stimulating diffusion of charged particles to the walls of the discharge container. These losses reduce the

chance of thermal instability and allow more power to be transferred through the system. Some systems

enhance turbulence to increase the power input and stability characteristics of the glow discharge. The

primary instability is a contraction of the plasma into a current filament which heats the gas into equilibrium

and forms a short circuit. To stably increase the gas pressure to atmospheric conditions, electronegative gas

and transonic or supersonic flow speeds must be used. Supersonic flow provides a stabilizing effect on the

contraction instability through suppressing the influence of local contractions. Figure 1.10 illustrates the

various regions of a glow discharge.[145, 186, 195, 201, 253, 336, 338, 358, 319]

Figure 1.10: Glow Discharge Regions, Adapted from Fridman.[145]

Figure 1.11 shows a glow discharge which was observed during testing. The coordinates x/G and y/G are

axial and tangential coordinates, scaled by the electrode gap distance G. All regions described in Figure 1.10

are visible in Figure 1.11 except the negative glow region.

An arrangement of electrodes in a strong magnetic field produces what is called the Penning glow

discharge. The Hall effect occurs due to the crossed electric and magnetic fields and generates rotating

clouds of electrons. It differs from the glow discharge above in that the Penning discharge has an order
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Figure 1.11: Glow Discharge Created During Testing

of magnitude higher electron gas densities. Plasma centrifuges can be created by the Hall effect and by

arranging the magnets as a magnetron, cathode material can be sputtered onto other surfaces for thin film

deposition.[145, 336, 320, 333]

1.3.2 Arc

Arc discharges are DC thermal plasmas which are self sustaining by thermionic emission (where hot metallic

cathode emits electrons from the metal surface) and field electron emission (where a strong electric field emits

electrons from a cold cathode through tunneling) from the cathode. Examples of arc discharge plasmas used

in lighting include xenon and mercury vapor lamps, which produce positive columns as in glow discharges

- except these are quasi-thermal plasmas. Plasma torches (also called arc jets) entrain surrounding flow to

generate temperatures near that of the surface of the sun for industrial metal working applications. A special

configuration of the arc plasma, called a gliding arc, allows buoyancy to create a traveling arc which begins

as a thermal plasma and transitions to a nonequilibrium plasma as it climbs and stretches across gradually

increasing gap distances.[145, 251]

Figure 1.12 is an example of an arc plasma encountered during testing. The coordinates x/G and y/G

in the figure are the axial and tangential coordinates, respectively, scaled by the electrode gap distance

G. When arc plasmas were encountered in actual testing, the plasma generator was turned off to avoid

overheating.
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Figure 1.12: Arc Discharge Created During Testing

1.3.3 Corona

Up to this point in describing plasma discharges, the electric field has been constant in space and time. A

corona discharge is a plasma with low luminous radiation only near one of the electrodes. To create this

discharge, the electric field is nonuniform spatially and may be DC or alternating. Specifically, the electric

field must be significantly higher near one electrode. A very high potential difference is required to generate

the corona. However, if the voltage difference increases further, the discharge transitions into a spark. This

type of discharge is found in the Aurora Borealis as well as on ship masts and near high voltage power lines

(known as St Elmo’s fire). To create the nonuniform electric field, a common method is through cylindrical

electrodes with a large gap (such as power lines or ship masts). Corona discharges are initiated through

Townsend breakdown and the subsequent self sustaining electron cascade is through secondary ion-electron

emission with the cathode (negative corona) or from streamers (which is a precursor to spark breakdown)

for the near-anode discharge (positive corona). A corona discharge can be predicted in air for parallel wires

by Peek’s Formula: Ecr[kV/cm] = 30δ(1 + 0.301/
√

(δr[cm])) where δ is the ratio of air density to sea level

standard conditions and r is the electrode radius. Peek’s formula is valid for pressures from 0.1 atm to 10

atm and up to 1 KHz in alternating current frequency. To initiate a corona discharge between parallel wires,

the following formula is applied Ecr = V
r ln(d

r ), where V is the voltage potential to be solved for and d is

the distance between the wires. Continuous corona discharges are limited to very low currents, but provide

a high concentrations of charged particles at atmospheric pressures. To increase the power input without

spark breakdown, the corona discharge is pulsed.[145, 201]
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1.3.4 Dielectric Barrier

Dielectric barrier discharges (DBDs) are a technique to modify the corona discharge to allow higher input

voltages without transition to spark breakdown by application of a dielectric material in the discharge gap.

The dielectric material prevents streamers generated at the anode from traveling to the cathode and short

circuiting the discharge gap. The dielectric also inhibits DC discharges, making the DBD plasma a frequency

driven system in the typical range of 0.5 to 500 KHz. DBD plasmas are used extensively in plasma displays,

industrial stack scrubbers and CO2 lasers. These plasmas can be generated with high input power and at

atmospheric pressure. The breakdown phenomenon is through a series of distributed small streamers called

microdischarges. Dielectric barriers can be used in a glow discharge configuration at atmospheric pressure

when in the presence of only noble gases which lack the electron affinity of electronegative gases to limit

thermal instabilities.[145, 126, 41, 337, 43]

1.3.5 Radio Frequency

In general, an oscillating electric field provides more effective ionization than a DC field due to the exponential

dependance of ionization rate on electric field magnitude. Radio frequency (RF) discharges can be split into

two groups based on pressure. Atmospheric (high) pressure RF plasmas are thermal equilibrium plasmas

which are not part of the current research effort interest. For the moderate pressures (roughly 50 Torr)

generated in the research facility for this effort, RF plasmas can be generated through inductive or capacitive

coupling. A capacitive coupled RF plasma is generated between two electrodes which stimulate an electric

field in the gap and produce a plasma. An inductively coupled plasma is created by a coil which creates an

electromagnetic field and subsequently a plasma. In either coupling scenario, the power generation system

must be in AC resonance with the discharge system - which requires tuning. Inductively coupled plasmas

(ICPs) can exceed CCP electron concentrations by an order of magnitude, but are limited to lower pressures

where the free electrons are effectively collisionless and involve a coil to generate the plasma vice electrodes.

This research effort will focus on generation of capacitively coupled plasma (CCP) based on the available

equipment.[145, 251, 393]

In a CCP, the ions may be considered at rest during an oscillation cycle forming an ion network, while

the electrons oscillate based on the polarity of the electric field. Electrons for a plasma sheath reside near

an electrode during part of the cycle, and vacate that region for the part of the cycle which is referred to as

the space charge phase. The alternation of space charges is what completes the RF circuit and generates the

plasma in a positive column similar to the DC glow discharge plasma. The CCP electrodes can be covered by

a thin layer of dielectric material with low capacitive resistance and not significantly effect the RF plasma
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generation. A CCP can be created in two regimes labeled the α and γ discharges respectively. The γ

discharge is marked by a luminous region in the positive column, which is missing from the α discharge. The

γ regime carries an order of magnitude higher current density and is marked by the influence of secondary

electron-electron emissions from the electrodes which are then accelerated by the oscillating plasma sheath.

The RF frequency for CCPs at moderate pressure has an upper limit related to the width of the plasma

sheath which decreases with increasing frequency. When the mean free path of the electrons (a function of

gas pressure) reaches the electron energy relaxation length, the plasma is then considered a low pressure

CCP and are out of the range of frequencies generated by the equipment in this research effort. The lower

bound of RF discharge is limited by time for an ion to travel across the discharge gap and is usually around

a frequency of 1 MHz. A typical frequency used in industrial RF plasma generation is 13.6 MHz, as this

frequency is reserved to avoid radio communication interference. Electron densities on the order of 1010 are

typical for medium pressure CCPs.[145, 255]

1.4 Plasma Flow Control

Using plasmas in flow control can be done through a many techniques. In the first technique, the plasma field

can be moved through magnetohydrodynamics. The charged particles in the plasma are accelerated when

subjected to a magnetic field. The mean motion of the charged particles entrain the neighboring neutral

gas and can be used to produce a significant flow field which is easily directed in different directions. In an

interesting experiment by Meyer et. al. [257], a Mach 3 Nitrogen RF capacitively coupled plasma is generated

in the divergent section of the 2-D nozzle. The plasma then travels into the constant cross-sectional area test

section, sustained by a DC potential applied there. The test section is sandwiched between an electromagnet

which can generate up to 1.5 Tesla. The generated magnetic field applies a Lorentz force axial to the flow

either with the flow or against it. The decelerating Lorentz force was found to increase density fluctuations

in the boundary layer by 10-20%, measured by laser differential interferometry.[320, 201, 202, 338]

Next, some pulsed or sinusoidally driven plasma generation schemes generate a plasma field and allow

the thermal characteristics of the plasma expand a pocket of nearby flow to produce a frequency controlled

forcing of the flow locally. A DBD plasma is used in a pulsed mode to decrease turbulence across an optical

port for a high powered laser as reported in a paper by Zubair et. al. [408]. The turbulence decrease

was measured by examining the laser abberations of a beam which passed through the the port. The

abberations caused by turbulence to laser beams mounted on aircraft looking can compound pointing and

tracking and the decrease in turbulence across the window is therefore important. The large scale turbulence
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across the window was amplified by forcing at 60 KHz, but was dissipated with a forcing frequency of 30

KHz.[127, 56, 238, 380]

An alternate application of the pulsed plasma for control, is the use of high frequency sinusoidally driven

plasmas described by Matlis, Corke and Gogineni [244]. In this application, an AC plasma is generated in a

small gap and used as a high frequency anemometer. The plasma volume responds to fluid velocity across

the gap in a fashion similar to a hot-wire, but with two times the frequency response of the smallest hot-wire

anemometers.

The effect of shock waves by a plasma field has received quite a bit of attention in research. Bow shocks

were reportedly weakened when ballistically fired through an RF capacitively coupled plasma in Argon in an

experiment by Lowry et. al. [230] They found bow shock standoff distances increased more than 10% with

the plasma on measured by holographic interferometry. The increased standoff distance infers a weaker shock

and for Lowry et. al. matches with CFD calculations for Argon at the increased temperatures measured in

the plasma field.[53, 4, 55, 57, 72, 76, 129, 193, 253, 255, 269]

Finally, a plasma field can be introduced on the surface of a plate, which heats the flow locally to

form a low density pocket. This pocket closely resembles a separation bubble, and depending on its shape

and forcing frequency, can generate vortices which alter the surrounding flow features to move turbulent

transition and delay separation of the boundary layer. Corke and Post [99] used DBD plasma generators on

the leading edge of various airfoils and found the leading edge generators delayed stall and increased post

stall lift considerably.[203, 43, 186, 126, 195]

1.5 Plasma Effects on Turbulence

In one of the most promising studies on the effect of plasma on turbulence, Appartaim, Mezonlin and

Johnson [36] suggest that plasma heating effects alone do not account for the increase in velocity of the

shock wave of various halogens in a shock tube experiment they performed. After modeling the shock speed

through the tube, heated to the same level as the measured plasma field in their experiment, they found that

a reduced kinetic theory turbulence model was required. The use of this model suggests that the plasma

process is interfering with the dissociation process in the shock wave as it travels by. The researchers further

surmise that this effect may be capitalized on in reducing drag on hypersonic vehicles.

Another potential effect is the use of plasma interacting with a flow to produce turbulence. Roth,

Sherman and Wilkinson [320] used an array of glow plasma actuators on the leading edge of a flat plate to

prematurely trip a flow into turbulence. The forcing amplitude of the actuators was varied in this research,
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causing the transition point to shift upstream for increasing forcing amplitudes at a frequency of 3 kHz.

Conversely, Visbal, Gaitonde and Roy [380] used pulsed DBD actuators at the leading edge of a NACA 0015

airfoil to prevent or delay transition and consequently minimize the effects of turbulence.[110]

Research was accomplished recently on the effect of a plasma field on turbulence. In a paper by Grau

and Messerschmid, a plasma field was introduced to provide translational heating of a hypersonic free jet to

12000K. The effect of the plasma field was to increase the temperature of the jet, and likewise the viscosity

of the flow. The contribution of turbulent viscosity was dwarfed by the thermal effects. Unfortunately, no

comparison of the flow with plasma on vice plasma off was accomplished to determine relative individual

contribution of these effects.[145, 158]

It is believed that turbulence could influence the subsonic and supersonic free jet in four different ways.

First, the increase in gas temperature caused by the plasma field could increase the viscosity of the shear

layer. The shear layer should be more affected than the jet core by the plasma heating effects due to lower

velocity and longer residence time in the plasma generating electric field. Additionally, research by Menart,

et al. [251] indicates the jet core will be difficult for the RF plasma to penetrate and the plasma field will

form in the shear region. The higher viscosity would serve to decrease turbulence. The temperature increase

to the jet from the plasma heating is yet to be determined and therefore the relative viscosity increase will

require experimental investigation.[149, 162]

Research on plasma fields in supersonic and hypersonic flow indicates thermal effects are present which

influence shock structure through heating of the flow. The flow heating increases the local speed of sound

and therefore reduces the strength of the shock wave. Additionally, the speed of sound is indirectly affected

by the molecular weight of the gas mixture. When a molecular gas dissociates, the molecular weight of the

gas mixture decreases, which results in an increased speed of sound. In non-equilibrium plasma, the ratio of

ionization is usually many orders of magnitude lower than the background gas which results in a negligible

change in molecular weight and therefore the primary influence on the speed of sound is derived directly

from temperature affects.[145, 5, 384]

Finally, the plasma field in this research is a capacitively coupled radio frequency discharge. The oscillat-

ing nature of the plasma field may induce a forcing function into the flow field. Kimmel[199] indicates this

forcing function can potentially couple into (or retard) the instabilities associated with the turbulent jet. An

investigation into different plasma frequencies can potentially shed light on this phenomenon. In a Moscow

State University program review paper by Aleksandrov et. al. [13] in 2005 the last recommendation reads:

“New understanding is required of influence of plasma turbulence and moving gas turbulence (at presence

of generated plasmas) and vortices on flow characteristics; influence of turbulence and vortices on generated
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plasmas characteristics; interaction of generated plasmas with boundary layers; creation of vortices and other

disturbances in boundary layers due to presence of charged particles.”[36, 200, 345]

In light of the previous research base on compressible axisymmetric jets, this effort seeks to use the jet

flow field for its turbulent properties. Given the current desires to use plasmas in the control of turbulent

flows it is important to understand the impact plasma has on turbulence. Then, the existence of plasmas

in turbulent compressible flows (e.g. re-entry and hypersonic vehicles) further motivates this research. To

better understand the impact of plasma on turbulence in the presence of compressibility, we offer this series

of experiments.
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Chapter 2

Test Apparati

This chapter describes the equipment used and developed for this research effort. First the facilities which

deliver high pressure air and evacuate the test chamber are detailed. Next, the test section is described.

Then, the nozzle design procedure is reported along with descriptions of all the nozzle contours as an aid

to modeling with computational fluid dynamics. Next, the equipment used to generate seed particles is

over-viewed. Finally, the plasma generation system is detailed, along with tuning philosophy and electrode

design methodology.

2.1 High Pressure Air

Figure 2.1: High Pressure Plumbing Diagram

To facilitate both the supersonic/hypersonic free shear testing and an upcoming supersonic blow-down

wind tunnel, the first task in this research project was to design and build a high and low pressure air

handling system. Figure 2.1 is a schematic of the high pressure plumbing and Figure 2.2 on the following

page (a) through (c) are photos of the installed system. The system consists of a CompAir Mako compressor,
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capable of producing 3.1 Kg/min at . The relative humidity of the compressed air is lowered by a Zander

inline drier. Typically, the dew point is roughly -40 oC. The air exits the drier and is stored in 4 cylinders

with a total volume of 1.78 m3 which can contain 255 Kg of air at 12.1 MPa and 293 K. The storage

tanks are certified to 16.9 MPa and have pressure relief valves installed, which are set to 16.9 MPa. The

compressor cut-off is set to charge the system to a maximum of 12.1 MPa and the system is designed with

an additional pressure relief valve set to 13.8 MPa in the compressor shed. The compressed air enters the

laboratory through a series of 7.62 cm Schedule 160 steel pipes, designed to handle the supersonic blow

down facility mass flow rate. Two large gate valves are in series, one for flow control (e.g. on/off) and one

for rough pressure regulation. Additionally, a burst disk is installed (which exhausts outside of the building

safely upward) in the last section of pipe and is designed to be replaced based on the operating pressure

of the installed test section. That section of pipe is currently open, awaiting installation of the blow-down

facility later this year. To run the free shear jet experiments, a small Tescom regulator is threaded into a

tap through the larger piping. Since the system is designed for a much larger wind tunnel, a fully charged

system lasts through about a month of testing in the vacuum chamber configuration.

(a) Compressor (b) Storage Tanks (c) High Pressure Pipe and Burst Disk

Figure 2.2: High Pressure Air Delivery System

2.2 Vacuum System

The test section is evacuated through 6 m of 20.32 cm schedule 80 PVC pipe by a Kinney KT-300 rotary

piston vacuum pump. The PVC piping has pressure relief plate to prevent damage in the event of vacuum

pump failure or other over pressure events. Figure 2.3 on the next page (a) and (b) show the pressure relief

plate (and chamber vent valve) and the vacuum pump installed in the compressor shed, respectively.[24]

The vacuum pump is able to draw the system down to 100 mTorr with no flow through the chamber

valve or the nozzle valve. Using the M=3.8 converging-diverging nozzle, the vacuum pump was run with

varying mass flow rates and chamber pressure was found to be linearly dependent on mass flow until 4 g/s.
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At mass flow rates higher than 4 g/s, the chamber pressure switches to a quadratic curve which was not

investigated for this experiment as the chamber pressures are outside the region of interest. Figure 2.3 (c)

shows the results of the mass flow experiment and the curve fit which was used in nozzle design in the next

section. The chamber pressure curve is approximated by Equation 2.1.

Pchamber[torr] = 5165.1(ṁ[Kg/s]) + 1.1164 (2.1)

The performance of the vacuum pump was improved significantly by open-loop cooling from the building

tap water and monitored in the lab by means of a remote reading bulb thermometer with 4.6m long capillary.

Previously, the vacuum pump oil temperature was controlled by a small closed-loop water chiller circulating

through the cooling jacket of the vacuum pump. The closed loop system was unable to keep up with the

thermal demand of the vacuum pump which allowed the oil temperature to rise and significantly degraded

the performance of the vacuum pump. The result was rising chamber pressures for fixed mass flows during

testing. The open-loop cooling and thermal monitoring allowed for continuous running and stable chamber

pressures for these experiments.

2.3 Test Section

The test section is a cube (30.48 cm per side) made of 2.54 cm thick Plexiglas. Optical access is provided

through 4 glass windows 15.24 cm in diameter and 1.91 cm thick. One face of the test section allows the

nozzle and plenum to slide along the flow axis. The opposite face is mated to the vacuum system. The

bottom window was replaced with a Plexiglas disk with threaded brass rods inserted to allow the electrical
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Figure 2.3: Vacuum Pump System
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connections needed for various plasma generating electrodes. Figure 2.4 shows a CAD model of the test

section.

Figure 2.4: Test Section

The plenum section is bored out of the center of a 6.99 cm diameter Aluminum cylinder. The nozzle is

bolted onto one face of the plenum. A valve arrangement is threaded into the opposite end of the cylinder

to allow seeded or un-seeded flow into the plenum and to monitor plenum pressure. The high pressure air

system is connected to the seeder to supply the test section with air which is low in water vapor and dust

particles.

Additionally, testing in pure gases such as Nitrogen and Argon was accomplished by simply connecting a

compressed gas cylinder to the plenum section with a regulator. Chamber pressure can be further adjusted

by means of a vent valve located downstream of the test section, shown in Figure 2.3 (a).

2.4 Nozzle Design

The nozzle section comprised of six separate pieces which mated together and were joined by four 20.32 cm

long hex head cap screws, as illustrated in Figure 2.5 on the following page. The nozzle section slid into

the test section through a nylon block and was able to adjust the gap distance between the cathode and

anode between testing. During testing, the nozzle section was bolted into place and the gap distance was

measured (under vacuum to account for any flexing under load). The first piece of the assembly was the

mating section. This 6061 aluminum alloy section allowed threaded 1.27 cm NPT brass pipe to be connected

for air delivery as well as a block to join each of the pieces of the nozzle section together and to mount the
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Figure 2.5: Cross-Sectional View of the Nozzle Assembly

nozzle section to the table. The 10.16 cm wide copper flashing was connected to the mating section as well,

to provide the anode grounding.

The next section slid into the mating section and provided mass flow regulation through a small sonic

orifice and was labeled the sonic orifice. Preliminary test results suggested particle seed concentration was

severely restricted when using a ball valve to regulate the mass flow. As the ball valve closed, the gap

between the ball valve and the valve wall decreased to the order of the seed particle diameter and a majority

of the seed particles were removed from the flow by collision with this gap. To eliminate this problem, a

series of axisymmetric sonic orifices were designed to provide mass flow regulation keeping the seed particles

contained in the flow. The contour of the section leading up to the orifice began as a 45 degree incline,

followed by an elliptical arc represented in Equation 2.2, where D? is the throat diameter. The resulting

elliptical arc segment was then rotated to the correct reference frame.[8, 46, 205, 220, 297]

rell =
√

3D?

4

√
1−

4x2
ell

D?2 , 0 ≤ xell ≤ 1.30D? (2.2)

Using the predictions of extremely underexpanded jets, the normal shock location was predicted to be

between 1.9 mm to 10.1 mm downstream of the sonic orifice for the anticipated test conditions. Two sonic

orifice diameters were utilized in this experiment. For the 8-9 torr experiments, a 2.52 mm diameter orifice

provided an estimated mass flow rate of 1.1 g/s. For the 5 torr experiments, a 1.50 mm diameter orifice was

used with a mass flow rate estimated at 0.6 g/s.[79, 100, 221, 283]

The remainder of the ram plug was designed to mate the the next section and to provide enough clearance

for the underexpanded jet to reach subsonic conditions prior to the flow straightener. Both the ram plug and
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flow straightener sections were designed in AutoCAD 2005 and fabricated by stereo lithography in the 3D

Systems Viper Stereo Lithography Apparatus from Accura SI 40 resin in the Ford Concurrent Design and

Manufacture Lab lab in the University of Illinois, Urbana-Champaign’s Mechanical Engineering Laboratory.

The flow straightener was designed to provide relatively uniform flow into the plenum chamber and to

eliminate any spurious large particles. Based on some research into particle sorting devices and preliminary

test results, it was hypothesized that large particles passing through an underexpanded jet would travel

down the center of the jet and would pass almost undisturbed through the shock produced in the resulting

underexpanded flowfield. Therefore, in an attempt to eliminate these large particles, a cone shaped spike was

placed in the center of the flow straightener to provide an impact point for those large particles. The base

of the spike also served as a convenient location to place a thermocouple to measure plenum temperature.

The thermocouple wire was fed through a small capillary to the exterior of this section and leaks were sealed

with vacuum grease.[240, 279]

The flow straightener mated directly to the plenum chamber, which provided a 15.24 cm long, 3.18

cm diameter long interior cylinder made of 6061 aluminum alloy for the flow to be conditioned prior to

acceleration through the converging-diverging nozzle. A hole was taped into the side of the plenum chamber

to provide access to a Pirani style ConvecTech Model CVT-275-101 pressure transducer from Duniway

Stockroom Corp.

The converging-diverging nozzle section then mated to the plenum chamber and was also constructed

out of Accura SI 40 resin using stereolithography which is advertised to provide build tolerances of ± 0.1

mm. The nozzle contour began with a 45 degree slope from the wall of the plenum chamber, transitioning

to an ellipse to meet with the throat (see Equation 2.2). The throat was a constant diameter section one

throat diameter in length. Next the diverging section was designed using NOZCS software developed by Dr.

A. Addy while at the University of Illinois, Urbana-Champaign and modified by Dr. M. Samimy at The

Ohio State University. This method of characteristics routine produced an initial expanding region and then

proceeded to align the flow and cancel any reflected expansion waves. The diverging section was based on

an inviscid flow assumption and was corrected for by increasing the desired exit Mach number to counter

the growth of the boundary layer and its resulting effective decrease to the contour radius. The results from

the method of characteristics code were curve fit to a 10th order polynomial to allow for evenly distributed

points along the contour, shown in Equation 2.3. Note that D? was the throat diameter. Table 2.1 on the

next page lists the input parameters used to create the nozzles built for this experimental investigation.[297]

rdiv

d?
=

1
2

+
10∑

i=1

ai

(xdiv

D?

)i

(2.3)
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Table 2.1: Nozzle Contour Parameters

Divergent Section Polynomial Coefficients
dexit d? 2rcw/d? Mgeom lDIV /d? a1 a2 a3

[mm] [mm] [ND] [ND] [ND] a4 a5 a6

a7 a8 a9

a10

9.52 8.78 50 1.40 1.73 1.926× 10−3 −9.240× 10−3 7.522× 10−2

−1.456× 10−1 1.564× 10−1 −9.857× 10−2

3.722× 10−2 −8.316× 10−3 1.016× 10−3

−5.234× 10−5

11.29 7.97 99 2.20 6.00 −4.382× 10−3 1.820× 10−2 −1.571× 10−2

9.462× 10−3 −3.216× 10−3 6.513× 10−4

−7.978× 10−5 5.781× 10−6 −2.280× 10−7

3.772× 10−9

15.66 15.17 50 1.30 1.37 1.505× 10−3 −1.036× 10−2 1.068× 10−1

−2.774× 10−1 4.004× 10−1 −3.397× 10−1

1.730× 10−1 −5.217× 10−2 8.607× 10−3

−5.996× 10−4

16.02 15.17 50 1.40 1.73 1.926× 10−3 −9.240× 10−3 7.522× 10−2

−1.456× 10−1 1.564× 10−1 −9.857× 10−2

3.722× 10−2 −8.316× 10−3 1.016× 10−3

−5.234× 10−5

20.76 20.29 5 1.25 0.72 −4.017× 10−3 2.073× 10−1 −8.899× 10−1

2.482 −4.483 5.210
−3.865 1.766 −4.518× 10−1

4.946× 10−2

During preliminary investigations, the initial radius of curvature (rcw in Table 2.1) was found to be set too

low and the resulting flowfield was measured to be still accelerating after exiting the diverging section of the

nozzle. Several iterations on nozzle designs were constructed and investigated until uniform unaccelerating

flow at several Mach numbers were achieved. Additionally, the uniform subsonic flow condition was achieved

by using a rather large throat diameter converging-diverging nozzle. This technique was described by

Pope [297] and the resulting flow was confirmed subsonic at the exit, through particle image velocimetry

and molecular tagging velocimetry. The final design contours are presented in Figure 2.6 on the following

page.

Chosen from preliminary experiments, another nozzle design was created for this study. The ‘nozzle’ was

created from a constant diameter section to produce the increased turbulence found in straight pipe flow.

The constant diameter was 9.52 mm and the section was 12.70 cm long. Varying subsonic and supersonic

flow speeds were achieved by changing the plenum pressure through the use of a ram plug with 1.50 mm

diameter orifice in combination with some ball valve regulation. The addition of the ram plug allowed the

ball valve to effectively throttle the plenum pressure without significant particle elimination. To directly

compare the effects of the straight pipe flow created from this constant area ‘nozzle,’ a converging-diverging
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Figure 2.6: Nozzle Contours

nozzle with an exit diameter of 9.52 mm was tested at the baseline pressure ratio and is discussed further

in Chapter 4.

The flow exhausting from a constant-diameter tube achieves supersonic conditions through what is sus-

pected to be an aerodynamic nozzle formed by a separation bubble created at the tube entrance in the plenum

chamber. Aerodynamic nozzles have been studied previously in annular ejector flows in constant-diameter

mixing channels. Predictions of the occurrence of aerodynamic nozzles in ejector flows were initiated by

Fabri and Siestrunck [130] and improved by Chow and Addy [82]. It was postulated that the separation

regions commonly formed in aircraft inlets were occurring at the right angle formed at the inlet to the

tube used in this experiment. Then, that separation region chokes the flow and accelerates it to supersonic

speeds.[?, 114, 165]

The final assembly of the nozzle section was the anode cap. This was a cylindrical cap, constructed

of 6061 aluminum alloy which slid over the diverging portion of the converging-diverging nozzle and had

threaded holes for the cap screws to fasten the entire assembly together. The steel cap screws additionally

provided the needed electrical connection to ground the anode for plasma generation.

2.5 Flow Seeding

Preliminary test results suggested that standard olive oil atomizers would not produce small enough particles.

To counter this problem, the flowfield was seeded with a Condensation Monodisperse Aerosol Generator

(CMAG) model 3475 produced by TSi Inc. The CMAG uses atomized NaCl crystals (nominally 10-100nm

in diameter) as a condensation source for heated DEHS oil vapor. The particle size can be adjusted by

40



Table 2.2: Condensation Monodisperse Aerosol Generator Settings [25]

Case A Case B Case C
NaCl Concentration [mg/l] 200 20 20
Total Flow Rate [l/h] 280 280 280
Saturator Flow Rate [l/h] 280 280 280
Screen Bypass Flow Rate [l/h] 0 0 0
Saturator Temperature [◦C] 300 300 300
Reheater Temperature [◦C] 140 140 170
Predicted Particle Diameter [nm] 100 600 1000
Measured Geometric Mean Diameter [nm] < 500 651 929
Measured Geometric Standard Deviation [ND] – 1.19 1.28

concentration and flowrate of the airborne salt crystals, as well as through varying the temperature of the

oil vapor and the condensation chimney.[25, 293]

Three settings were used to verify the particle size distribution against the results from the manufacturer.

To validate the particle size distribution, a test was performed with the assistance of Jongmin Lee and Dr.

Yuanhui Zhang of the Department of Agricultural and Biological Engineering at the University of Illinois,

Urbana-Champaign. The settings listed in Table 2.2 were used to generate particles from the CMAG which

were captured and analyzed with an Aerodynamic Particle Sizer (APS) model 3321 from TSi Inc. Figure 2.7

(a) through (c) show the particle size distributions of the three cases. Note the APS 3321 only measured

particles with diameters larger than 500 nm and therefore Figure 2.7 (a) can only confirm the absence of

larger particles. The mean geometric diameter and geometric standard deviation for cases B and C are

summarized in Table 2.2 and compared to the results from the TSI manual.[25]
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Figure 2.7: Particle Size Distributions Measured with the Aerodynamic Particle Sizer, APS-3321 from TSi

The CMAG 3475 was shipped with two output ports, one collected particles from the center of the

condensation chimney and the remaining output particles were collected in the second output port. The

manufacturer recommends discarding the seed particles from the secondary output to reduce the variation
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in particle size. The CMAG 3475 was modified to combine the output from both ports to increase the

number of seed particles and to prevent the loss of seed particles from a pressure differential across the

output ports.[25]

Given the resulting increase in geometric standard deviation, which was expected from the modification

to the CMAG 3475, excellent agreement was achieved in this validation experiment, therefore the mean

particle diameter provided from the manufacturer is believed accurate. Under the settings used for this

experiment, the CMAG is estimated to produce quasi-monodisperse seed particles with an estimated mean

geometric diameter of 100 nm, which corresponds to Case A in Table 2.2. Additionally, to perform a study

on the effect of particle size on the accuracy of flow measurement in rarefied flow, the settings from Case C

were used, resulting in a measured mean geometric diameter of 0.93 µm with geometric standard deviation

of 1.28.[25, 293]

2.6 Plasma Generation

The plasma generation system consisted of surprisingly few components. Most of the system monitoring

was provided by the Dressler Cesar 1350 RF generator and accompanying Dressler VarioMatch VM-5000W

automatic impedance matching network. The RF generator produced up to 2 KW of power at 13.56 MHz and

is commonly used in electroplating and for the semiconductor industry. The generator actively monitored

the system impedance and can automatically control the impedance matching network.[33, 34]

(a) Manual Inductance Coil (b) RF Plasma Electrical Connections

Figure 2.8: Plasma Generation Components

Impedance matching was critical in RF plasma generation, as reflected power in the transmission lines

drastically reduced the power available to the electric field for plasma sustainment. Typically, to generate
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a plasma the impedance matching network was augmented with an additional inductance coil. The coil

was fashioned from 2.4 m of 1.3 cm ID copper tube. The coil was made of 4 turns with a diameter of 19.1

cm and a total length of 12.7 cm. The inductance of this coil was adjusted by using large battery clips to

select the number of turns in which current can pass through. Figure 2.8 (a) is a schematic of the manual

inductance coil. The greater the number of turns available increases the relative inductance. When the

automatic inductance matching has reached its maximum or minimum capacity, the plasma generator was

switched off and the number of turns selected on the manual coil was increased or decreased, respectively.

Equation 2.4 was the calculation for inductance of a simple coil.

L[H] =
µoµrN

2πr2

l
(2.4)

Table 2.3: Relative Inductance of

the Manual Coil

N [ND] l [cm] L/µoµr [m]

1 3.2 28.8

2 6.4 57.5

3 9.5 86.2

4 12.7 114.9

For a coil of d = 19.1 cm

with l = 3.2 cm/turn

Inductance, L, increases with the number of turns N and with the

radius of the turn r, while decreasing with the length of the coil l. The

two factors µo and µr are functions of the winding material and the

magnetic properties of the material which the coil is wrapped around.

For a copper coil in air, the µ parameters are constant. Table 2.3 shows

the relative inductance L/µoµr available for each turn of the inductor.

To create plasma, the RF generator was connected to the im-

pedance matching network with a RG-393 semi-rigid cable and a serial

cable for automated impedance balancing. The variable impedance

network was then connected to the manually tuned inductance aug-

mentation coil with 10.2cm wide copper flashing. Electrical power at

13.56MHz is transmitted by skin current, which required transmission lines to have at least 4cm of cross

sectional width. The copper flashing provided the lowest impedance connection for RF power transmission

and was recommended by the manufacturer for electrical connection to the plasma cathode and from the

anode to the ground. The connection between the RF generator and the matching network used RG-393

cable and was already tuned for that connection. The output of the manual coil was then connected to the

cathode in the test section. The anode was then grounded by a run of copper flashing to a true earth ground

rod installed through the floor of the laboratory. Figure 2.8 (b) is a schematic of the electrical connections

for RF plasma generation.[33, 34, 308]

To minimize the risk of electrical contact to the exposed metal required to generate the plasma field, the

electrical connections were barricaded with a partition during operation. Additionally, only personnel re-
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quired for the test are present in the lab while plasma generation equipment is in operation. Everyone present

in the lab during plasma operation was instructed on the risks of contact with exposed electrical connections

and the procedures for emergency shutdown and injury procedures prior to the start of testing.[33, 34]

Tuning of Optimal Plasma Fields

To achieve the best possible plasma field, the following procedure was used. First, a continuity check was

accomplished to verify the copper flashing was not grounded out on nearby metal surfaces and that the

electrical connectors were properly attached. The continuity check involved drawing the test chamber down

to 500 mtorr with all valves closed (this also served as a leak check). Then an α-discharge plasma field

was created. These plasmas were easy to create, using only 5 Watts of forward power. The quality of the

plasma field was verified visually with indications of strong visible emission. Additionally, two criteria were

verified. First, the bias voltage, measured by the plasma generator was confirmed to be over 5 Volts. Next,

the reflected power was confirmed to be 1 Watt or less.[308]

After the continuity check, test conditions were set in the chamber - with plenum pressure set to the

desired flow conditions and measured real time by the Pirani style ConvecTech Model CVT-275-101 pressure

transducer from Duniway Stockroom Corp. The pressure measurement was displayed on a Terranova Model

906A Convection Gauge Controller also from Duniway Stockroom Corp. The chamber pressure was set at

5, 8 or 9 torr depending on the test and also measured by a separate CVT-275-101 pressure transducer

and displayed on a Terranova Model 907 Hybrid Capacitance Diaphragm Gauge and Convection Gauge

Controller. For these chamber pressures, a γ-discharge could be generated by setting the forward power

control on the Dressler Cesar 1350 RF generator. Typical settings were between 50 and 150 Watts, increasing

for chamber pressure and electrode gap spacing. After a plasma field was ignited, the field was examined

for stability, uniformity and symmetry. The goal was to produce a uniform and symmetric (about the

centerline of the jet) visible emission between the cathode and the anode. It was required that the plasma

not transition into an unstable thermal mode such as an arc discharge. If the plasma emission did not reach

the entire distance from the cathode to the anode, the power was incrementally adjusted to achieve the

maximum plasma volume in the electrode gap. Note that the typical behavior of the plasma was to begin

as a cathode layer and grow with a positive column towards the anode with increasing forward power. After

plasma ignition, reflected power was monitored continually. The requirement achieved in all the testing was

for 0 Watts reflected power. At some points during the increase in forward power, some minor adjustments

were required in the tune or load capacitors to null out reflected power with matched impedance. Only

one setting was used on the manual augmentation impedance coil, with all four turns being utilized (the
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electrical connectors were attached to opposite ends of the, providing maximum impedance).[145, 308]

Forward power was increased until hints of instability appeared, the first signs of instability were typically

asymmetries on the cathode which grew into visible waves which traveled toward the anode. At this point,

the power was reduced slightly to eliminate the plasma waves. If the waves were left uncountered, they

would transition to an arc later during testing. As chamber pressure increased the margin between power

required to start the plasma field and the power of unstable transition shrank. At a gap space of 60 mm, the

crossover for these two power levels occurred at 10 torr - requiring a smaller electrode gap to reach higher

pressures.[145, 308]

2.7 Electrode Design

Figure 2.9: Cross-Sectional View of Anode and Cathode Installed in Test Section

The design of electrodes used in this experiment were based on a series of variations in preliminary

testing. The arrangement settled upon was to utilize a cap covering the nozzle as the anode and allow the

jet to exhaust through a semi-torus energized as the cathode. Desired features in this arrangement included:

• Flat surfaces on the cathode and anode face, to mimic efficient capacitors.

• Rounded edges to prevent arcing and corona discharges, making the plasma field more stable.

• Electrical connections easily passed into the test section, with minimal opportunity for vacuum leaks.
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• Cathode position easily changed to vary the gap spacing between cathode and anode, a critical para-

meter in optimum plasma discharge.

• Plasma field concentrated in the shear layer of the jet to provide maximum effect to the turbulence in

the shear layer.

Figure 2.9 on the preceding page details the cathode and anode in the test section.[145, 308]

Figure 2.10: Cross-Sectional

view of Semi-Torus Cathode

The cathode was a 6061 aluminum alloy semi-torus formed from a disk

7.0 cm in diameter and 1.9 cm thick. A 3.8 cm diameter hole was drilled

through the center for the jet to flow through. The face pointing towards

the cathode was rounded with a circular bevel of 0.6 cm. Figure 2.10 is

a cutaway view of the cathode, showing the rounded face. The cathode

was secured to the test section with a frame constructed of fiberboard and

epoxy. The frame was designed to prevent anode vibration, as the vacuum

pump provided minor excitation to the test section. Additionally, the

frame was constructed out of non-conducting materials to eliminate arcing

sources. The semi-torus was electrically connected to the test section wall

through a 3.2 mm thick piece of 6061 aluminum alloy 1.9 cm wide, which

was formed to avoid sharp angles to minimize corona discharges. This

aluminum stem was secured to the floor with threaded rod 6.4 mm thick. Sandwiched between the foot of

the aluminum stem and the test section floor was a 3.2 mm thick piece of Macor ceramic to prevent melting

of the plexiglas on the floor of the test section, should the cathode inadvertently become hot. The face

of the semi-torus was coated with two layers of Boron Nitride, a dielectric paint, to prevent oxidation and

arcing. The Boron Nitride was then coated with two coats of high temperature flat black spray paint to

protect the Boron Nitride, which was easily scratched, and to reduce reflections as the Boron Nitride coating

was white. After the electrical connection was secure in place, the stem and aft section of the semi-torus

were coated in RTV to minimize corona discharges and to prevent arcing. The RTV was found to be very

effective in reducing plasma fields from forming away from the gap between the anode and cathode. These

plasma fields became strong enough to divert the entire plasma away from the desired location at pressures

over 6 torr.[145, 308]

The anode was formed providing a grounding plate to the aft end of the nozzle assembly. The anode

cap on the front of the nozzle was electrically connected by four 20.32 cm long steel cap screws, which

joined the grounding plate and the anode cap. Great care was taken in shielding the copper flashing by

enclosing the flashing in 10.16 cm diameter PVC pipe for most of the run from the grounding plate to
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the grounding rod in the laboratory floor. Inadvertent contact between the grounding line and any metal

surfaces, resulted in significant increases in reflected power from mismatched impedance in that portion of

the circuit. In portions of the grounding line which were fatigued by repetitive bending, fractures developed

which were readily apparent in increased reflected power, due to the interruption of eddy currents. Caution

was exercised near the grounding plate to minimize bending and periodically, that portion of the grounding

line was replaced with fresh copper flashing. The anode cap was left uncoated, as only the cathode was

discovered to undergo oxidation.[145, 308]

A modified anode was designed to focus more plasma energy near the exit of the jet. The anode was

formed from the conventional flat faced anode described above, by milling a cone segment which came to a

lip at the opening drilled for the jet exit. The modification was then altered by filing 8 grooves into the lip to

produce a weak corona discharge in the non-uniform electric field formed in the serrations. The modification

to the anode was labeled the serrated conical feature. Figure 2.11 is an external view of each anode design

clearly showing the serrations of in the conical lip.[145, 308]

(a) Flat Anode (b) Modified Anode

Figure 2.11: A View of Each Anode, Showing the Flat Anode and the Anode Modified with Serrated Conical
Feature
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Chapter 3

Test Techniques

This research effort concerns the changes in flow properties, particularly the mean and fluctuating properties

of a subsonic and supersonic free shear flow fields due to changes based on the addition of a plasma field.

Historically, the measurement of these flow properties would be accomplished through pitot probes, cone

static probes and hot-wire anemometry. These invasive probes alter the flow, which implies they measure a

different flow than exists in the absence of the probe. The use of these probes in combination can provide

fluctuating quantities for the flow variables of pressure, density and velocity. However, the technique to

reduce this data into the respective primitive variables requires the assumption that each probe individually

sees the same flow field, even though the probes are traversed through the test section sequentially and the

probes are of differing shapes and therefore, see different flows.[250, 371]

These detractors provide motivation for the use of non-intrusive diagnostics. Non-intrusive diagnostics

are used in determining the flow properties of interest in this research effort. Each of the diagnostics are

based on the measurement of light. The sections which follow describe each of the measurement techniques

used, the test procedures and the measurement uncertainties.

3.1 Measurement Uncertainty and Error Propagation

Before proceeding through each measurement technique, it is important to mention a few concepts of the

propagation of measurement errors. All measurements deviate from the truth by an unknown uncertainty.

To that end, it is utterly impossible to ascertain the precise truth of what is trying to be measured. However

through observation of numerous measurements it is believed that the truth lies somewhere within the

center of our measurements. Each measurement has associated with it errors of two types, random and

bias. Random errors correspond to the usually minor fluctuations in the data recorded, and are considered

to by uncorrelated to neighboring measurements and unaffected by the conditions associated with the test.

Random errors are assumed to distributed around the truth by a Gaussian distribution and can be quantified

and minimized by the taking of an ever increasing number of samples.[92, 183]
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Errors of bias, on the other hand, are errors which are not distributed around the truth which we attempt

to measure. Some bias errors are made by blunders in the setup or in data taking technique, while others

are known prior to testing and unavoidable. Bias errors are unlike random errors in that larger data sets

will not minimize their affect, as an error in bias is not represented by a Gaussian distribution and is usually

highly correlated to the test conditions. The only hope in minimizing errors of bias, are through vigilance

in data acquisition, care in planning and patience in troubleshooting.[92, 183]

In processing and combining raw data from many separate measurements, the combined effect of random

and bias errors propagates through the system. It is customarily assumed that the errors are small with

respect to the measurements being taken. Following that logic, it flows naturally that error propagation

can processed through linearizing the equations through which the uncertainties pass. To combine different

errors, it is important to avoid overly cautious propagation. Specifically, the affect of errors which cancel

each other must be considered. The standard treatment of canceling errors is to combine each error’s

contribution through the L2 norm. This approach is the most common technique for error propagation and

is the approach followed here, as represented by Equation 3.1. The variable εi represents the normalized

uncertainty for measurement i, while εc is the combination of propagated errors through the L2 norm

technique.

εc = ‖εi‖2 =
√∑

i

ε2i (3.1)

One of the key factors in producing a realistic measurement of uncertainty is in non-dimensionalizing each of

the measurements by realistic values which represent the test conditions. The non-dimensionalizing process

allows each of the factors of uncertainty to be combined under the L2 norm. Errors of bias are estimated to

provide 95% coverage of the uncertainty they introduce, while random errors are included as a ‘2σ’ source

to provide the equivalent 20:1 odds. Finally, the effect of large sample sets is included where applicable,

typically as a factor of 1/
√

N , where N is the number of samples used to find the mean. In the sections

which follow, each test technique will be scrutinized for applicable measurement uncertainties. The effect

of measurement uncertainties will be propagated into the calculated results to quantify the impact of the

combination of the uncertainties.[92, 183]
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3.2 Particle Image Velocimetry (PIV)

(a) PIV Setup (b) PIV Image Correlation

Figure 3.1: Particle Image Velocimetry Description, From LaVision[388]

Particle Image Velocimetry uses a pulsed, coherent illumination source focused into a plane to create a

two dimensional interrogation region which is imaged by a charge coupled device (CCD). Naturally occurring

or artificially injected seed particles scatter light in Mie, or Raleigh regimes and are recorded as bright pixels

on the camera. Multiple frames are analyzed sequentially and computer software correlates the velocity field

required to produce the recorded particle motion. The results from this technique are advantageous in that,

a low power illumination source is acceptable, an entire two-dimensional region can be measured in one test

and the setup is simple since frequency information is not required to determine path velocities. Figure 3.1

illustrates the setup for PIV and the image correlation technique. The correlation software works under the

assumption that many of the particles in the first image remain in the subsequent images. The first image

is compared to the second image by dissecting the image plane into smaller pieces.[12, 307, 388]

A section of the image (of size M ×N) at initial time ta is introduced as a function of intensity Ia(i, j),

where i and j represent the pixel indices corresponding to the axial and tangential directions of the CCD

image. The first thing to accomplish in processing is to calculate the cross-correlation function between the

initial image a at ta and the second image Ib(i + k, j + l) at tb, where the location of the second image

is shifted by (k, l) with respect to the first image. The cross-correlation Rab(k, l) is a summation of the

multiplied intensities at each pixel of the two images being compared.

Rab(k, l) =
1

MN

M∑
i=1

N∑
j=1

Ia(i, j)Ib(i + k, j + l) (3.2)

As it turns out, the Fourier transform of the image intensity can be used here to cut the number of mathemat-

ical operations from O(N4) to O(N2 log2 N). The cross-correlation function Rab(k, l) is found equivalently
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by

Rab(k, l) = F {Ia(i, j)}F {Ib(i + k, j + l)}? (3.3)

where F {}? is the hermitian of F {}. Since the image is a series of discrete pixels, the Fast Fourier Transform

(FFT) is used to calculate the discrete Fourier transform of the image. Note that the FFT analysis assumes

a periodicity to the data. Nyquist sampling theorem therefore imposes that data aliasing will occur if the

particles in the image travel more than half the total sub-image in the time ∆t = tb− ta. To get around this

problem, the sub-image size can be increased, or the time ∆t can be decreased. After computing the cross-

correlation function, the maximum value determines the most likely shift of the second image with respect to

the initial image. The accuracy of this displacement (kmax, lmax) is limited to ±1/2 a pixel. To improve this

a Gaussian curve fit is applied to interpolate the true peak of the cross-correlation function Rab(kmax, lmax).

Most common is a three-point estimator, where [kmax − 1, kmax, kmax + 1] and [lmax − 1, lmax, lmax + 1] are

investigated to determine the actual peak to sub-pixel accuracy (ksub, lsub).[307, 373]

ksub = kmax +
lnRab(kmax − 1, lmax)− lnRab(kmax + 1, lmax)

2 ln Rab(kmax − 1, lmax)− 4 ln Rab(kmax, lmax) + 2 lnRab(kmax + 1, lmax)
(3.4)

lsub = lmax +
lnRab(kmax, lmax − 1)− lnRab(kmax, lmax + 1)

2 ln Rab(kmax, lmax − 1)− 4 ln Rab(kmax, lmax) + 2 ln Rab(kmax, lmax + 1)
(3.5)

Two techniques are applied to this algorithm to improve the results. First, the Gaussian interpolation

technique assumes that particle illumination is Gaussian. One case when this does not occur is when a

particle is truncated on the border of a sub-image. If the peak displacement is near this region, the resulting

interpolation is doomed. To improve this common situation a technique called correlation multiplication is

used. This is a re-normalization technique where the cross-correlation function is weighted by overlapping

windows which can provide the correct peak location even in the presence of image truncation. The next

improvement comes through an iterative sub-imaging technique. This sub-imaging utilizes the displacement

vector field calculated previously to cut the interrogation window in half and re-evaluate the cross-correlation

to produce displacement vectors at twice the resolution. This technique can be applied multiple times, at

the sacrifice of exponentially increasing processing time.[17, 168]

In some locations, the cross-correlation algorithm finds a spurious solution. These vectors are eliminated

by two techniques. First, by estimating the maximum velocity expected in the flow field, the maximum pixel

displacement can be determined prior to image processing. Using that prediction, vectors which are longer

than a set threshold are eliminated from the analysis. Next, a nearest neighbor check is performed, where

vectors which deviate more than two standard deviations in displacement from their nearest neighbors are
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eliminated.[12, 17]

This technique relies on seed particles injected upstream to act as tracers of the gas motion, which

requires some caution in use. If the flow field contains significant motion out of the plane of illumination,

then the particle correlation accuracy quickly degrades as particles in the first image are no longer present

in subsequent images. Seeding issues of large particle size and sufficient particle density are also an issue

with this technique. The issue of particle tracking will be covered in detail in the results.[12, 195, 266, 307]

3.2.1 Experiment Setup

Figure 3.2: Schematic of Particle Image Velocimetry

Table 3.1: Description of Optical Components in Figure 3.2, the
Schematic of Particle Image Velocimetry

Item Description
A Dichroic Mirror
B Lens, Cylindrical-Convex f = 500 mm
C Lens, Spherical-Convex f = 750 mm
D Knife-Edge for Beam Forming and Reflection Minimization
E Beam Dump

Figure 3.2 outlines the setup of the particle image velocimetry system schematically. Note that the

optical components are labeled in the figure and those letters correspond to the component descriptions

52



found in Table 3.1. The initially round cross-section of the laser beam was formed into a sheet by means of a

cylindrical plano-convex lens which spread the beam horizontally. Next, the beam was focused vertically by

a spherical plano-convex lens with the focal point placed just to the left of the nozzle centerline to provide

the thinnest sheet possible and avoid shadows in the camera field of view caused by particles located in the

focus of the laser sheet.[125, 307]

To set the test conditions and provide seed particles in the test section, a compressed Nitrogen tank

supplied gas primarily to the model 3475 Condensation Monodisperse Aerosol Generator (CMAG) by man-

ufactured by TSI Inc. The exhaust of the seeder was at atmospheric pressure, and therefore the seeder was

allowed to vent continually into the lab. The exhaust of the seeder was carried out of the room by an exhaust

fan when particles were not being drawn into the test section. To ensure that the gas in the test section

was Nitrogen, some of the gas from the cylinder was fed directly into the lab vent, providing slight positive

pressure to the CMAG during the testing.[25, 125]

The seed particles were illuminated by the Gemini-15Hz PIV Nd:YAG laser made by New Wave Research.

The laser produced two sequential pulses of light at a nominal frequency of 532 nm. The minimum spacing

between laser pulses produced by the controller of the Gemini PIV laser system was over 1 µs. In order to

sequence the laser pulses under the minimum threshold, the laser pulse timing was externally controlled by

a Quantum Composers Model 565 8-channel pulse generator. This provided a significant reduction in the

timing of the pulses. Pulse-to-pulse jitter was estimated at 0.5 ns, based on the Gemini Manual.[19, 30, 125,

307]

The images were captured by the PCO.1600 charge-coupled device (CCD) camera from Cooke Corp.

The camera allowed for rapid interline acquisition of image pairs and was sequenced to capture one image

from each of the two laser pulses from the Gemini PIV laser system. Images were then stored in a computer

for post processing.[27, 125]

Downstream of the test section, 15.24 cm PVC tubing evacuated the test section to the desired pressure.

Chamber pressure was adjusted by means of a vent located in the PVC evacuation plumbing and was fed

by means of a regulated compressed Nitrogen cylinder. Vacuum was provided by the Kinney KT-300 rotary

vacuum pump.[24]
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3.2.2 Test Procedures

Initially important to each set of PIV runs, was the calibration and focusing of the optics. The laser sheet

was aligned to be parallel to the laser table. Subsequently, the test section and jet orientation were confirmed

to be parallel to the laser sheet. Next, the camera was aligned and focused onto the laser sheet by filling the

test section with seed particles and illuminating them with the laser. The pixel locations were calibrated,

first by taking an image of a ruler with 0.254 mm markings which was placed into the focal plane of the

camera. Then, the location of the camera field of view was surveyed by viewing the anode face with the

camera. The electrode gap distance, anode face location and camera position were measured relative to

reference marks by means of a caliper with resolution down to 25.4 µm. From the surveyed position, the gap

distance and camera position were able to be adjusted relative to the reference marks, which were recorded

and used in post processing. Note that the survey position and any adjustments were made with the test

section under vacuum to account for slight motion of the nozzle (typically 0.2 to 0.3 mm) due to bending of

the rig attaching the nozzle to the table when the test chamber was evacuated.[125, 307]

Next, the maximum jet velocity to be tested was estimated from isentropic relations. That velocity and

the camera scale factor were then used to set the delay between laser pulses. The pulse delay was set to allow

a seed particle to travel approximately 13 pixels between pulses at maximum velocity. Then, the images

were synchronized with the laser pulses. A sample set of images were taken: to confirm the particles were

visible and focused throughout the entire image, to confirm seeding was optimized in concentration and

uniformity, laser power was optimized to prevent blooming and provide adequate illumination. The images

were post-processed to confirm the expected maximum velocity was achieved, that the jet was centered in

the field of view and that the camera was acquiring the portion of the laser sheet which was Gaussian in

illumination. Non-Gaussian illumination was easily identifiable in unexpected drop-offs in maximum velocity

and in processing errors which produced tell-tale shifts in the velocity field.[12, 307]

The test conditions were set with regard to the plenum pressure, chamber pressure and CMAG and

were allowed to stabilize prior to data acquisition. Then, plasma off and plasma on cases were taken in an

interleaved fashion. The first plasma off run was taken, to fill the camera memory buffer. While the first

run was downloading, the plasma field was turned on and allowed to stabilize. Then the first plasma on case

was taken. This sequence continued until the desired number of images were stored on the computer (1056

or 1150 depending on whether the images stored were 1200x1600 pixels or 1200x1200 pixels, respectively).

Images were acquired at a rate of 8 to 10 Hz, depending on settings and one sequence of interleaved runs

took about thirty minutes to set up and thirty minutes of acquisition.[125]

After the data were stored, they were transferred to two processing computers. The computers were

54



based on the ASUS P5W64 motherboard, running Intel Pentium Core Duo processors over-clocked to 3.0

GHz. The combined two computers allowed for four simultaneous batch jobs to be processed. Each one of

the interleaved sequences took 14 hours of processing time. The images were correlated through DPIVB

version 2.1 from ISSI Inc. The correlation software produced a field of vectors which matched the shift

produced by the illumination of the seed particles in two successive images. Three stages of correlation were

accomplished on each image pair The first stage correlated 128x128 pixel windows in the image with 50%

overlap. The second stage examined 64x64 pixel sub-windows, aided by the pixel shift information from stage

one. Finally, 32x32 pixel windows produced a field of vectors spaced every 16 pixels with displacement in axial

and tangential directions relative to the centerline jet flow. Correlation was enhanced through correlation

multiplication. The four correlation maps were placed around the window of interest with 50% overlap and

were the same size as the interrogation window. Additionally, between each stage, vectors calculated were

examined according to to filters. The first filter eliminated vectors which were longer than 15 pixels. The

second filter performed a consistency check of the nearest neighbors to the vector being examined. Vectors

were eliminated if the length of the vector of interest was more than two standard deviations longer than its

neighbors.[12, 17, 83, 116, 307]

Next, the vector fields were further evaluated by a MATLAB program which was developed for this

research effort. The program read in each of the vector files produced from DVIPB and applied the calibra-

tions between pixel and physical distance as well as the time delay between laser pulses. Some points were

eliminated from the velocity field at this time based on the result of the correlation algorithm. No more

than 10% of the velocity vectors were eliminated through these processes. The mean velocity fields were

then output into files for plotting. To perform statistical analysis on the velocity data, four rows of velocity

information were combined at specific locations to provide more than 4,000 data points. The locations se-

lected corresponded to cross-sections of the jet, displaced from each other by roughly 20 mm and are shown

in Figure 3.3. The velocity fields were then subjected to statistical analysis.[12, 17, 116, 307]

The mean velocities in axial (U) and tangential (V ) directions were calculated by

U =
∑

∆xi

N∆t
, V =

∑
∆ri

N∆t
(3.6)

where ∆xi and ∆ri are the pixel displacement in the axial and tangential locations, ∆t is the temporal

displacement between image pairs and N are the number of vectors summed. The standard deviations of

velocity were then calculated by

σu =

√∑
u2

i

N
, σv =

√∑
v2

i

N
(3.7)
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(a) Chamber Pressure of 5 Torr

(b) Chamber Pressure of 8-9 Torr

Figure 3.3: Location of PIV Measurement Stations for Statistical Analysis

where ui and vi are the fluctuations of velocity from the mean.[64, 307, 352]

Next second and third order moments were taken of the data and are represented in Equation 3.8

through 3.13

u2 =
∑

u2
i

N
= σ2

u (3.8)

v2 =
∑

v2
i

N
= σ2

v (3.9)

uv =
∑

uivi

N
(3.10)
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u3 =
∑

u3
i

N
(3.11)

u2v =
∑

u2
i vi

N
(3.12)

uv2 =
∑

uiv
2
i

N
(3.13)

Most of the terms above were analyzed after scaling by the centerline velocity Uo at the location of interest.

The Reynolds shear stress term was examined by two other scalings. When scaled by multiplication of the

root mean square (standard deviation) of the velocity fluctuations, e.g. σuσv this term was labeled the

Reynolds shear stress correlation coefficient, Cuv and is an indication of correlation between fluctuations

in the axial and tangential velocities. Values near unity indicate positive correlation, while values close

to negative one indicate anti-correlation. Values near zero report that the fluctuations are uncorrelated.

Another way to examine the Reynolds shear stress was through the structural parameter a1. Equations 3.14

and 3.15 show the scalings of Reynolds shear stress by velocity fluctuations to produces the correlation

coefficient (Cuv) and structural parameter (a1), respectively.

Cuv =
−uv

σuσv
(3.14)

a1 =
−uv

σ2
u + σ2

v

(3.15)

Turbulent kinetic energy (TKE), k, is a derived term, often used in turbulence modeling in computational

fluid dynamics. TKE is aptly named, as it represents the amount of kinetic energy present the turbulent

fluctuations of the flow field. Note the factor of two in the denominator in Equation 3.16 below.

k =
σ2

u + σ2
v

2
(3.16)

The parameter k is scaled by centerline kinetic energy U2
o /2, which eliminates the factor of two from the

relation.[64, 289, 307, 352]

Further examination of the velocity fluctuations can be found in analysis of the distribution of fluc-

tuations. This was accomplished by examining skewness and kurtosis of the axial velocity fluctuations.
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Equations 3.17 and 3.18 detail the computation for skewness and kurtosis, respectively.

skewness =
u3

σ3
u

(3.17)

kurtosis =
u4

σ4
u

(3.18)

Skewness is an indication of a shift in velocity fluctuations when compared to a purely Gaussian distribution.

A Gaussian distribution has skewness of zero, which marks that the distribution of fluctuations is symmetric

about the mean. Positive skewness represents a shift toward the right tail (positive fluctuations), while neg-

ative skewness is shifted toward negative fluctuations. A Gaussian distribution has kurtosis of three. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution.

While conversely, values above three represent flatter distributions. [75, 289, 307]

3.2.3 Uncertainty Estimates

This section accounts for the majority of uncertainty analysis performed for this research effort. Many

calculations were accomplished on the velocity fields after processing. It is important to determine the

effect of uncertainty as it propagates through the calculations. In order to determine the relative effect

of a combination of uncertainties, the variables are all scaled by appropriate parameters. Thereby relative

uncertainties may be compared to produce the overall effect on the calculated variables. Table 3.2 summarizes

the scaling process used for all of the calculations accomplished on particle image velocimetry data. Note

that the convention used throughout the uncertainty analysis is to designate ε as the scaled uncertainty in

a particular parameter and is non-dimensional in nature. ∆ is used to indicate a bias (or propagated error)

in a measured (calculated) variable, while σ is the root mean square of the fluctuations in the measured

sample. Finally, N is the number of samples taken in the data set.[92, 183]

The values chosen to provide scaling were taken from two conditions. The use of these conditions help

illustrate that the effect of measurement uncertainty can vary for different points in the flow field. Note here,

that when measurements are made of very small values (e.g. the velocity of fluid at rest), the uncertainties

can become incredibly large. The baseline flow to be used in propagating PIV measurement uncertainty is

based on the test conditions of the 9.5 mm exit diameter converging-diverging nozzle. The pressure ratio

used drives the flow at Mach 1.4. The two conditions chosen are located 11.3 diameters downstream of the

anode face and represent the furthest downstream measurement station. This station is where the primary

statistical analysis was performed in the results section. The first condition is along the centerline of the
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Table 3.2: Scaling of Measurement Uncertainties
in Particle Image Velocimetry

Scaled Scale Result
Uncertainty Factor

εU Uo ∆U/Uo

εV Uo ∆V/Uo

εσu
U ∆σu/U

εσv
V ∆σv/V

ε
u2 U2 ∆u2/U2

ε
v2 V 2 ∆v2/V 2

εuv UV ∆uv/UV
εk k ∆k/k
εa1 a1 ∆a1/a1

εCuv
Cuv ∆Cuv/Cuv

ε
u3 U3 ∆u3/U3

ε
v3 V 3 ∆v3/V 3

ε
u2v

U2V ∆u2v/U2V

ε
uv2 UV 2 ∆uv2/UV 2

εskewness skewness ∆skewness/skewness
ε
u4 U4

o ∆u4/U4
o

εkurtosis kurtosis ∆kurtosis/kurtosis

jet. The other condition takes into the account the increased turbulence and decreased velocity of the shear

layer. Table 3.3 describes the actual scaling conditions used in propagation analysis.[92, 183, 307]

Note in Table 3.3 that the tangential velocity V was chosen to be 5 m/s as representative of the observed

mean value and to prevent division by a very small number overwhelming the effects of its relatively small

overall contribution to most propagated uncertainties. The values of x and r chosen correspond to the

velocities U and V , respectively, and represent the number of pixels traveled in time t. The bias estimates

were arrived at as follows. The error in timing between two pulses was arrived at by researching the manuals

for both the pulse generator and the laser which generated the pulses. The timing error ∆t was estimated

to be 6 ns as the manual specification for pulse-to-pulse jitter of the laser, which was much higher than the

timing uncertainty associated with the pulse generator. Therefore the percent uncertainty from timing was

ε∆t = 6ns/1096ns = 0.5%. The error in pixel displacement by correlation analysis provided by the DPIVB

software program was commonly estimated at one-tenth of one pixel, assuming the laser sheet is providing

Gaussian illumination. Sub-pixel accuracy was achieved by matching the intensity captured from illuminated

particles through a Gaussian shaped peak locator. Therefore the position errors ∆x and ∆r were set at

0.1 pixel. The axial uncertainty therefore ε∆x was that error, scaled by the mean value of 8.6 pixels, or 1.2

to 1.5%. In the radial direction, the error has a larger effect on ε∆r. In this case, even though the actual

uncertainty is only 3.0 m/s, the radial velocity is approximately zero and therefore the relative uncertainty
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Table 3.3: Conditions Chosen to Represent Test Con-
ditions for the Analysis of Uncertainty Propagation in
Particle Image Velocimetry

Parameter Value
Centerline Shear Layer

t 1096.0 ns 1096.0 ns
x 8.6 pix 6.7 pix
r 0.2 pix 0.4 pix
Uo 257.5 m/s 257.5 m/s
U 257.5m/s 200.9 m/s
V 5.0 m/s 12.9 m/s

σu/Uo 23.5% 26.0%
σv/Uo 14.0% 16.0%

N 4000. samples 4000. samples
Bias Estimates

ε∆t 0.5% 0.5%
ε∆x 1.2% 1.5%
ε∆r 59.9% 23.2%

is 23.2% to 59.9%. This relative uncertainty is expected and acceptable.[17, 19, 30, 83, 92, 183, 307]

To begin looking at the propagation of uncertainties, the first example is to examine the mean velocity

which is represented by Equation 3.19.

εU =
‖ε∆x, ε∆t, 2σu/Uo‖2√

N
(3.19)

Two important points need to be made here. First, the bias uncertainties represented by ∆x and ∆t come

from the simple time-of-flight calculation used to create velocity vectors from the correlation of PIV images.

The bias uncertainties are estimated to contain errors with 20:1 odds. The uncertainty due to fluctuating

measurements are then matched to roughly the 95% bounds of Gaussian distribution which is a multiplicative

factor of 1.96. Since there are only a finite number of samples, convention suggests rounding the factor up to

2σ in order to account for the increased uncertainty introduced by finite data sets. The three contributions

which propagate the uncertainty are combined under the L2 norm.[92, 156, 307]

The second important point to mention is the influence of a large number of samples on uncertainty

of the mean. The influence on mean velocity in Equation 3.19 is accounted for by the factor
√

N in the

denominator as detailed in Coleman and Steele. [92] It is clear that the use of large data sets is advantageous

in significantly reducing the error of mean measurements. However, a point is reached where decreasing gains

make the cost of continued reductions exorbitant.[50, 307]

And by following the derivation of uncertainty in standard deviation of velocity outlined in Grant and
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Owens[156], the uncertainty of σu is

εσu
=

√
2
N

√
1 + 2

(σu

U

)2

(3.20)

where εσU
represents the uncertainty already scaled by the centerline velocity Uo. Note that the uncertainty

of a standard deviation is dependent only on the number of samples taken. The last term in Equation 3.20

is introduced to account for the effect of uncertainty based on the measured fluctuations, which provides

negligible effects when measured fluctuations are less than 30%. Similarly, the uncertainty in the tangential

direction is given by Equation 3.21.[92, 289, 307]

εσv =

√
2
N

√
1 + 2

(σv

V

)2

(3.21)

Because of judicious choices made in scaling, uncertainty in higher order moment fluctuations break into

linear combinations of the uncertainty in standard deviation. For example, the Reynolds normal stress term

u2 when scaled by the centerline velocity has twice the uncertainty of εσU
. When calculated terms are scaled

by the standard deviation in velocity, then the uncertainties are combined under the L2 norm. Table 3.4

steps through each of the propagated uncertainties and provides an estimate for both the centerline of the

jet and the shear layer for the baseline case. Again, the conditions chosen for this baseline case are detailed

in Table 3.3.[50, 92, 183]
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Table 3.4: Propagation of Measurement Uncertainties in Calculations
Performed on Particle Image Velocimetry Data

Scaled Derivation Value
Uncertainty Centerline Shear Layer

[%] [%]
εU ‖ε∆x, ε∆t, 2σu/Uo‖2/

√
N 0.7% 0.8%

εV ‖ε∆r, ε∆t, 2σv/Uo‖2/
√

N 1.0% 0.6%

εσu

√
2
N

√
1 + 2

(
σu

U

)2 2.4% 2.5%

εσv

√
2
N

√
1 + 2

(
σv

V

)2 2.2% 2.2%
εσ2

u
2εσu

4.7% 4.9%
εσ2

v
2εσv 4.5% 4.5%

ε
u2 2εσu 4.7% 4.9%

ε
v2 2εσv

4.5% 4.5%
εuv ‖εσu

, εσv
‖2 3.2% 3.3%

εk ‖2εσu
, 2εσv

, 2εUo
‖2 6.7% 6.9%

εa1 ‖2εσu
, 2εσv

, εuv‖2 7.3% 7.5%
εCuv ‖εuv, εσu , εσv‖2 4.6% 4.7%
ε
u3 3εσu 7.1% 7.4%

ε
v3 3εσv 6.7% 6.7%

ε
u2v

‖2εσu
, εσv

‖2 5.2% 5.4%
ε
uv2 ‖εσu

, 2εσv
‖2 5.1% 5.1%

εskewness ‖ε
u3 , 3εσu

‖2 10.0% 10.5%
ε
u4 4εσu

9.4% 9.9%
εkurtosis ‖ε

u4 , 4εσu
‖2 13.3% 14.0%
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3.3 Molecular Tagging Velocimetry (MTV)

Molecular tagging velocimetry appears to be first introduced by Miles et. al. [261] in an experiment where

lines of Oxygen where caused to fluoresce by laser tagging and a small jet flow was tracked. Since then,

others have seeded water flow with soluble phosphorescent molecules [148, 182], and phosphorescent molecule

vapor such as Biacetyl [176, 359]. The first use of molecular Acetone vapor for MTV traces back to Lempert

et. al. [217] in an experiment where Acetone was used to make velocimetry measurements in supersonic

microjets.[174]

This technique uses a gas (which will be termed the tracer molecule) seeded into the flow, that fluoresces

when excited by the laser which is tuned to overlap the absorption line(s) of the molecule. The tracer

molecules absorb a photon and rise to an excited electrical state. When the molecules transition back to

their ground state, they release a photon at a longer wavelength. The tracer molecules have an absorption

well, where they have an affinity for absorbing photons which result in a fluorescent release. Technically,

fluorescence is the transition of the tracer molecule into an excited state, and then directly back to the

ground state through a released photon relaxation. Typical fluorescence times are on the order of 10 ns.

Some tracer molecules undergo phosphorescence, when after excitation, they transition to a triplet state

where energy is held captive from milliseconds to hours and then released through photon relaxation back

to the molecular ground state. Quenching can also occur, where the molecule initially excited by an incident

photon then releases its energy through molecular collision. Diatomic Oxygen is very effective at quenching

fluorescence and phosphorescence through an unusual triplet ground state.[175, 176, 217, 397]

Figure 3.4: A Schematic of MTV Response at

Increasing Time Steps

The technique for MTV is relatively straightforward.

A flow, seeded with tracer molecules, is excited by a laser

beam cutting through at a location of interest. Then,

the tracer molecules are excited - typically to phospho-

rescence. The flow field is then imaged two times. The

first image occurs quickly after excitation to capture the

illuminated particles as a line. The next image is taken

with a delay. The two images are compared and a mean

velocity profile is deduced from the distance traveled dur-

ing the delay time. Phosphorescent molecules are therefore desired due to the longer time they emit light,

allowing longer delays between imaging. The longer delay produces better resolution of low speed flows, but

produces a larger distortion in the shape of the line - which ultimately results in a limit to the maximum

velocity resolution. Figure 3.4 shows a schematic of the typical MTV response with increasing time delay
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between the first and second image. Note the lines are increasing in thickness through dispersion and de-

creasing in intensity through phosphorescent decay in addition to traveling downstream with the flow which

is up in this figure. Processing of the images is accomplished by slicing the image into columns, aligned with

the direction of flow. Each of these slices is examined to determine the position of maximum image intensity.

The first and second images are then compared to produce a displacement of the maximum intensity location

for each slice. Velocity in the direction of the slice is then determined simply by U = ∆x/∆t.[125, 218]

MTV is useful as a flow diagnostic at the low pressures expected for this investigation. However, the

technique has some limitations. In regions of recirculation, the initial line of particles becomes smeared

and results in an inability to resolve important portions of the flow of interest to this study. Additionally,

the difference between excitation into fluorescence and phosphorescence becomes important, as fluorescent

emission intensity is roughly an order of magnitude lower than phosphorescence. The transition into the

quantum forbidden triplet state to produce phosphorescence is extremely dependent on the quantity of mole-

cules excited to singlet and triplet states already, as well as the quantity of quenching molecules (such as

Oxygen). For example, Acetone has a transition from singlet state fluorescence to triplet state phosphores-

cence which occurs at 10 torr - where higher pressures result in predominately phosphorescent emission, but

lower pressures produce fluorescence.[218, 176, 370]

Acetone was the seed particle selected for use in this investigation. Acetone requires excitation by the

4th harmonic (266nm) of the Nd:YAG laser, which required the replacement of the glass windows with fused

silica windows, which are transparent to the UV spectrum. One of the advantages of seeding with Acetone

is the relative simplicity in the seeder arrangement, since it can be sprayed and evaporated into the flow

upstream of the nozzle.[218, 232, 397]

3.3.1 Experiment Setup

Table 3.5: Description of Optical Components in Figure 3.5,
the Schematic of Molecular Tagging Velocimetry

Item Description
A UV Dichroic Mirror
B Fused Silica Lens, Spherical-Convex f = 500 mm
C Beam Dump

Figure 3.5 is a schematic of components used in the molecular tagging velocimetry technique. In contrast

to PIV, the CMAG seed particle generator is replaced by a model 9302 atomizer from TSI Inc. Nitrogen is

fed into the atomizer and controlled through a regulator. Oxygen quenches Acetone phosphorescence and

therefore the acetone placed in the atomizer was continually pressurized with Nitrogen gas. The output of
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Figure 3.5: Schematic of Molecular Tagging Velocimetry

the atomizer was connected to 15 m of 3 mm diameter copper tube to ensure the acetone was completely

vaporized. From this arrangement, the Nitrogen gas was assumed to be completely saturated with Acetone

vapor - which at 20◦C results in a molar concentration of 25.5%. Now while it is realized that this mixture

of Acetone vapor and Nitrogen gas does not have the same molecular weight as pure Nitrogen, the mean

flow results calculated by this technique are compared to PIV data with the same concentration of Acetone

vapor and therefore provide the same flow field for particle tracking comparisons.[125, 232, 281, 370, 397]

The saturated mixture was then injected into the plenum chamber and regulated by means of a ball valve.

The ConvecTech CVT-275-101 Pirani style pressure gauge connected to the plenum chamber was extremely

affected by the addition of Acetone. The pressure gauge required calibration by means of diaphragm style

absolute pressure transducer (Omega PX303-015A5V gauge read on an Omega PP302-E display). in order

to be used for controlling the experiment. The same type gauge was used in monitoring chamber pressure,

but was unaffected (maximum 3% offset noted) by Acetone addition due to the location of the chamber

transducer and the dilution of the chamber with supplemental Nitrogen vented in downstream. The vacuum

arrangement and venting to control chamber pressure is the same setup as detailed in the PIV technique

and is not repeated here for brevity.[21, 23, 233]

The Spectra Physics GCR-230 Nd:YAG laser provided the beam source, nominally at 266 nm with pulse

width measured at 8 ns. Since the beam was in the UV region, the optical components were made of fused

silica. The beam was positioned by means of two dichroic mirrors optimized to reflect 266 nm light at 45◦

angles. The collimated laser beam was focused using a spherical plano-convex lens with focal length of 500

mm. The optical components shown in Figure 3.5 are described further in Table 3.5.[29]
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Images of the Acetone phosphorescence were recorded on a Princeton Instruments ICCD-576-S cooled

and intensified charge-coupled device (ICCD). The camera was cantilevered over the test section and was

adjustable in axial and tangential directions relative to the flow through two large translation stages. Since

the camera used an intensifier, gated images of 50 ns were able to be taken and were controlled by a Princeton

Instruments PG-200 programmable pulse generator. The laser pulse and camera images were synchronized

by use of the Quantum Composers Model 565 8-channel pulse generator. 1000 images were taken at each

test condition and then downloaded to a computer connected through use of a proprietary card and custom

cable.[22, 28, 30, 31]

3.3.2 Test Procedures

To begin the test, detailed position calibrations were made. The scale to convert between pixels and physical

units was made by imaging a ruler placed at the center of the jet and parallel to the stimulating laser beam.

The ruler had marks every 0.254 mm. After the calibration was known, the distance between the anode

face and the center of the laser beam was measured from an image of the acetone filled test chamber. The

chamber was evacuated to account for the shift of the nozzle under the load of vacuum. The florescence

signal of the Acetone vapor was measured by centering the camera gate around the laser pulse. The location

of the anode face was then known by a slight reflection off the metallic surface. Pixel damage from reflection

of laser light into the ICCD was avoided by the use of standard glass in the camera lens as well as the optical

access window over the test section. Standard glass has very low transmission of light at 266 nm, while

the florescence and phosphorescence signals are in the visible region and pass through the glass components

easily. Subsequent measurements of the phosphorescence signal were taken on a 50x576 pixel sub-region of

the ICCD which was centered around the beam to reduce stored image file sizes and to speed the framing

rate of the camera to match the laser pulse frequency of 10 Hz.[125, 174, 217]
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Figure 3.6: Relative Intensity of the Fluorescence/Phosphorecence of Acetone Vapor in Nitrogen at 5 Torr
After Being Tagged by a UV Laser Beam at 266nm

To give an idea of the response of Acetone to stimulation by light at 266 nm, Figure 3.6 shows the

relative intensity curve for saturated Acetone vapor in Nitrogen in the test chamber, taken at a chamber

pressure of 5 torr by an Hamamatsu Model R-1306 photomultiplier tube and recorded by a Hewlett Packard

54542A oscilloscope. The initial slope of the response curve is the florescent decay and has a decay time

constant measured at 38 ns. The exponential decay which follows is the phosphorescence of Acetone and

has a measured decay time constant of 311 ns. [160, 206, 282]
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Figure 3.7: Schematic of the Shock Structure of a Highly Underexpanded Jet Showing the Response Just
Downstream of the Mach Disk of a Line of Molecular Tagging Velocimetry at Successive Time Steps

Now, in order to investigate a sample of the response of a tagged line of the Acetone tracer in a jet flow,

refer to Figure 3.7. This figure shows the structure of a highly underexpanded jet. The jet is formed by flow

exiting out of a sonic orifice, which is the location where the flow chokes. The jet exits into a relative vacuum

and forms an expansion region and accelerates rapidly in the chamber with static pressures dropping below

that of the chamber. Next, the flow forms a barrel shock structure in order to match the chamber pressure.

This pattern will continue in a chain of shocks if the pressure ratio is high enough. An interesting place to

examine the flow is directly downstream of the Mach disk. Here, the flow is subsonic downstream of the

normal shock, but the flow which surrounding the disk passed through the reflected oblique shock and is

still supersonic. The morphing of the tagged line due to flow velocity at increasing time intervals is shown

at the bottom of the figure. The Mach disk region is located in the center, surrounded by the higher speed

flow which forms two lobes.[100, 228]
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(a) Elapsed Time 500.0ns

(b) Elapsed Time 400.0ns

(c) Elapsed Time 200.0ns

(d) Elapsed Time 100.0ns

(e) Elapsed Time 0.0ns

Figure 3.8: Time Lapse Imagery Indicating the Motion of an Acetone Seeded Flow Field (A Highly Un-
derexpanded Jet Just Downstream of the Mach Disk) Imaged After Being Tagged by a UV Laser Beam at
266nm
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This extended emission by means of phosphorescence presented in Figure 3.6 was key to utilizing Acetone

in the molecular tagging technique. Figure 3.8 is made from a series of phase locked images with growing

delay times from the exciting laser pulse. The images were taken for an underexpanded axisymmetric jet

just downstream of the normal shock and the flow is from the bottom of the page towards the top. Given

the upward direction of the flow, the time delay from laser pulse increases from the bottom of the page

(panel (e)) towards the top (panel (a)). Note that for increasing delays, the intensity of the shifted beam

decreases. The best combination of adequate intensity and maximum pixel travel was found to occur at 400

ns.[159, 171, 174, 207]

Figure 3.9: Line of Acetone Phosphorescence Indicating Location of the Peak Determined from Curve Fitting
Algorithm

From images like these, the velocity in the axial direction was obtained by use of a Gaussian curve fitting

routine. A MATLAB program based on the ’fminsearch’ algorithm matched the following equation to the

measurement of intensity at each pixel.

Ifit = a exp

(
−
(

xpixel − b

c

)2
)

+ d; (3.22)

Where Ifit is the resulting intensity fit for a Gaussian peak centered at b. The constant a represents the

maximum value of the peak, and the FWHM is c. A correction for constant floor d was included to improve

the fit and never exceeded 1% of the peak value. The use of this curve fit provided sub-pixel accuracy,

and assumed the illumination source is Gaussian. The result of the curve fit was a series of b values which

indicated the location of the peak center, which was calculated individually for each column of pixels and at

every frame acquired. Velocity information was easily obtained then by a simple time-of-flight calculation.

The MATLAB code written for curve fitting also determined the pixel shift and corresponding mean velocity

profiles. Figure 3.9 shows the performance of the peak locater. The contours represent relative intensity of

the phosphorescence signal acquired for an axisymmetric jet flow. The abscissa of the contour plot is scaled

by jet diameter, while the ordinate is in pixels. A black line is superimposed on the contour which represents
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the calculated peak location and shows excellent tracking of the center of the contour. The computationally

intensive nature of the Gaussian curve fitting routing required the use of the LINUX workstation cluster at

the Air Force Institute of Technology.[125, 174, 182, 217, 375]

3.3.3 Uncertainty Estimates

The uncertainties in measured parameters are again followed through the same procedure used in the PIV

calculations. However, the propagation through the calculations is significantly reduced as the only mea-

surement made was mean velocity. Table 3.6 details the test conditions of the Mach 1.4 axisymmetric jet

exhausting into a chamber pressure of 5 torr. The location of the measurements was made at 1.1 diameters

downstream of the anode face and therefore differ from Table 3.3. Also, note that the flow speed is affected

by the saturation of Nitrogen by Acetone vapor which doubles the molecular weight of the test gas without

changing the ratio of specific heats.[370, 374, 397]

Table 3.6: Conditions Chosen to
Represent Test Conditions for the
Analysis of Uncertainty Propa-
gation in Molecular Tagging Ve-
locimetry

Parameter Value
t 400.0 ns
x 3.1 pix
Uo 362.0 m/s
U 362.0 m/s
N 1000. samples

Bias Estimates
ε∆t 2.0%
ε∆x 3.3%

σu/Uo 0.1%

The bias estimates were calculated in similar fashion to PIV analysis. The Gaussian curve fit routine

provided 0.1 pixel accuracy, which was scaled by the 3.1 pixel motion in this example. To cover the spread of

timing uncertainty to better than 20:1 odds, the value was estimated to be 8 ns which was the measured pulse-

to-pulse jitter of the Spectra Physics laser used for phosphorescence excitation. This factor was scaled by the

400 ns delay between laser pulse and camera gate. Equation 3.23 provides the propagation of measurement

uncertainties, with the consideration for improvement provided by large sample sets. By substituting in the

values in Table 3.6, the uncertainty in estimating the mean velocity, εU was 0.1%. [29, 92, 183]

εU =
‖ε∆x, ε∆t, 2σu/Uo‖2√

N
(3.23)
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3.4 Laser Energy Deposition

The Laser Energy Deposition (LED) technique is used here to generate a predictable, periodic large scale

structure in the shear layer of the jet. The large scale structure is visible and able to be tracked as it

progresses downstream in the shear layer, moving at the convective velocity. Phased-locked particle image

velocimetry is utilized to provide mean flow images of the large scale structure at increasing delay times in

order to measure the convective velocity of the shear layer. From this technique, the influence of the plasma

field on the convective velocity is observed.[11, 111, 149, 151, 364, 391]

Figure 3.10: Flow Visualization of Mie Scattering

from Condensation of a Mach 2.0 Jet Showing

Development of the Large Scale Structure from

Laser Energy Deposition, from Adelgren et. al.

(US Government Work)[11]

The use of LED was introduced by Adelgren et.al [11]

as a technique to measure convective velocity through

tracking the development of a large scale structure. Fig-

ure 3.10 shows flow visualization from a perfectly ex-

panded Mach 2.0 jet where the large scale structure cre-

ated by LED at the nozzle exit develops and travels down-

stream. Two recognizable regions are marked in the im-

ages at ‘a’ and ‘b’. The primary structure ‘a’ is the vortex

core which is trailed by an elongated secondary structure

‘b’. Note how the structure grows and spreads as it con-

vects downstream. Adelgren et. al. found that the large

scale structure position can be tracked by following con-

tours of tangential velocity, where the vortical motion of

the core vortex region shows up clearly. The large scale

structure produces strong tangential velocities (> 30% of

the convective velocity) in the swirl of the vortex. One

the downstream side of the vortex, the tangential velocity

is outward, away from the jet core, while on the upstream

side, a lobe of velocity toward the core is created. Adel-

gren et. al. found these lobes provide excellent tracking contours.

3.4.1 Experiment Setup

Figure 3.11 is a schematic of the LED configuration for testing. The setup is similar to the particle image

velocimetry schematic of Figure 3.2, with the addition of another laser and associated optics. All of the optical

components are specified in Table 3.7. The LED laser source is the Spectra Physics GCR-230 Nd:YAG laser,
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Figure 3.11: Schematic of Laser Energy Deposition

Table 3.7: Description of Optical Components in Figure 3.11, the
Schematic of Laser Energy Deposition

Item Description
A Dichroic Mirror
B Lens, Cylindrical-Convex f = 500 mm
C Lens, Spherical-Convex f = 750 mm
D Knife-Edge for Beam Forming and Reflection Minimization
E Beam Dump
F Lens, Spherical-Convex f = 750 mm

tuned to a nominal frequency of 532 nm. The PIV laser and LED laser are phase-locked to the PCO.1600

Cooke camera by means of an Quantum Composers Model 576 8-channel pulse generator.[29, 27, 30]

3.4.2 Test Procedures

The setup for LED was the same as described in the PIV section. After the camera was focused and

calibrated for position and surveyed relative to the anode face, it was centered roughly between the cathode

and anode and aligned to capture the full extent of the jet shear layer. Next, the LED laser entered through

a glass window and was focused to a point in the test section. The focal point of the beam was placed on

the anode lip, near the jet exit and in the plane of PIV imaging.

A small ablation region was created at the anode lip by creation of a small plasma at the beam’s focal

point. The LED laser was passed through a series of neutral density filters to cut the power per pulse down
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to 20 mJ. The pulse power was monitored in between experiments through an Ophir Nova II power meter

coupled to an Ophir Model 30(150)A-HE power head which measured average energy of a series of pulses.

The power per pulse was determined by dividing the average energy by the pulse repetition rate of 10 Hz.

Additionally, real-time pulses were monitored by observing a reflection of the laser beam off one of the

dichroic mirrors by a DET-200 photodiode from Thor Labs. The resulting curve of intensity as a function of

time was integrated by an Stanford Research Systems SR-250 boxcar integrator which was monitored during

testing by a Fluke 89 IV multi-meter.[11, 111, 149, 151, 364, 391]

Synchronization of the LED pulses were first estimated by the time required for a structure to travel at

one-half the jet exit velocity the distance from the anode face until centered in the CCD field of view. This

approximation consistently placed the structure barely in the upstream portion of the CCD image. From

there various time delays were examined to determine three or four delays in which the period structure

created would be observable by PIV. The test then proceeded through the matrix of time delays where plasma

off runs were interleaved with plasma on runs. The time delays were interleaved as well to account for any

degradation of the large scale structure due to the drilling of small holes into the anode from the focused

laser light. For each time delay more than 750 PIV image pairs were collected and processed. The resulting

data set required 238 gigabytes of storage for the images and subsequent PIV vector fields.[11, 17, 307]

The large scale structure was tracked through post-processing analysis of the vector fields. The velocity

fields were shifted into the convective reference frame allowing clear observation of the period structure for

tracking. From there, contours of tangential velocity, scaled by convective velocity were gathered and stored

in files. A contour representing the location of the structure at each time delay and plasma condition was

then evaluated by a centroid tracker. The centroid tracker was written in MATLAB and preferred round

contours, which required care when selecting contours. When possible, the same contour level was used for

each different time step and plasma condition. In some cases, the contour level was adjusted to provide

accurate centroidal position. The contour levels were adjusted by no more than 5% of the initial contour

level. Convective velocity Uc was measured according to Equation 3.24

Uc =
x2 − x1

t2 − t1
(3.24)

where the subscripts 1 and 2 correspond to two different time delays, x is the centroid position and t is the

value of the time delay.[11]

A sample of the expected large scale structure tracking, is shown in Figure 3.12. The results presented

are in an experiment from Adelgren et. al. [11] for a perfectly expanded Mach 1.38 jet into quiescent air
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Figure 3.12: Contours of Tangential Velocity in the Convective Frame Showing Large Scale Structure Motion
in the Shear Layer of a Mach 1.38 Perfectly Expanded Jet, From Adelgren et. al. (US Government Work) [11]

(with very low speed co-flow) at atmospheric pressures. Three successive time delays show the large scale

structure in tangential velocity contours as well as the vector field in the convective velocity frame. Note

how the motion of the large scale structure is readily apparent in the tangential velocity contours (u in their

experiment).

3.4.3 Uncertainty Estimates

The uncertainty in this technique was overwhelmingly biased toward the error created by tracking the

structure with the centroid tracker. The error in measuring position based upon a poor choice in contour

was measured to be 0.2 mm. While, it is believed that the contour choices were much better than the

worst case scenario the measurement error stands in order to conservatively contain 20:1 odds. The error in

timing is so small (0.01%) that it is neglected as a contribution further downstream. Additionally, the errors

associated with PIV image processing to determine the velocity field are not propagated forward as these

errors are minimized by 750+ samples and are small when compared to the two measurements of centroid

position. The centroid position error propagates forward into the uncertainty in convective velocity then by

εUc
= ‖ε∆x1 , ε∆x2 , ‖2 (3.25)

where ε∆x is the uncertainty in centroid position, scaled by (t2−t1)Uc. Given the large variation in time delays

and convective velocities, the propagated uncertainty will not be tabulated here. Instead, the uncertainty

in each measurement reported in the results has a column reporting the uncertainty associated with that
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measurement and is found in Table 3.7 on page 73. [11, 92]

3.5 Plasma Imagery of Visible Light Emission

Figure 3.13: Schematic of Photon Emission from

an Excited Molecule

Light emitted by plasma excited molecules and atoms

were collected by photography with a cooled charge-

coupled device in this technique. Visible light emission

from the plasma field is an easily observable phenom-

ena which indicates the presence of a strong plasma field.

The plasma works on the both the radicals and molecules,

pumping the ions and neutrals into electronic states much

higher than ground. Figure 3.13 is a drawing of an ex-

cited molecule releasing a photon and dropping from an

excited electronic state E2, to a lower state E1. One of

the readily apparent indicators of the presence of mole-

cules in elevated electronic states is photon emission. And

therefore in locations where there are high concentrations of molecules and radicals emitting photons, it can

be deduced that the field performing the work on those molecules is high. By capturing light on a charge-

coupled device with constant exposure settings, the relative grayscale intensity of the light can be compared

to provide a figure of merit on the plasma strength for each case.Calibrations were made so that different

plasma fields could be compared to each other to provide a quantitative evaluation. This section provides

the details regarding the setup and prosecution of the experiment.[125, 229, 308]

3.5.1 Experiment Setup

Figure 3.14 describes the layout used to collect visible light from plasma emission for use in quantitative

analysis. Nitrogen was fed from compressed cylinders through a regulator into the plenum, where total

pressure was measured by a ConvecTech CVT-275-101 Pirani style pressure transducer and total temperature

was measured by a K type thermocouple read by an Omega HH81 digital thermometer. The flow was then

accelerated onto conditions through the nozzle section which exhausted into the test section. The flow

through the test chamber is from top to bottom, as indicated by the blue arrow with the light purple

trapezoidal region signifying the plasma field. The test section was 30.48 cm in length, width and height

with optical access provided on 4 sides (the sides without nozzle or vacuum ports) through 15.24 cm round
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Figure 3.14: Schematic of Imaging Visible Light Emission

glass windows, 19.1 mm thick. Over the top access window, a PCO.1600 CCD camera from Cooke Corp. was

cantilevered. The camera was allowed to traverse axially and tangentially with respect to the flow through

two translation stages. If required for focusing, the camera could be adjusted perpendicularly to the focal

plane by means of cap screws through slotted grooves attached to the cantilever assembly. A computer was

connected to the camera control to acquire and store the images. Downstream of the test section, the flow

exhausted into 15.24 cm PVC pipe which was evacuated by a Kinney KT-300 vacuum pump. To adjust

and regulate chamber pressure, a bottle of compressed Nitrogen was vented into the PVC plumbing at a

T-connector through a regulator.[24, 27, 23, 125]

3.5.2 Test Procedures

The goal of this test technique was to capture images which were calibrated in position and intensity, in order

to compare the plasma field emissions of the various test conditions. To calibrate the images in position,

the pixel size was calibrated by photographing a ruler with 0.254 mm increments. The camera was aligned

to the anode face such that the pixel coordinates corresponded to axial and tangential coordinates relative

to the flow. Given that the focal plane of the camera was parallel to the test section to within ±2◦, it was

assumed that the pixel size was the same in both the axial and tangential directions.[125]

Next, the images were calibrated in intensity. To provide the highest resolution of intensity, the longest

exposure time possible was desired. The exposure time was set using the no-flow α-discharge to allow
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sufficient time for several cases to be evaluated. The exposure time was increased until the point of saturation

occurred in the anode and cathode glow regions. The exposure time was set at 100 ms. The lack of

overexposure was confirmed by checking some of the brighter plasmas tested and found that saturated

pixels occurred only near the electrodes or in the case of an unstable plasma which transitioned to an arc

discharge. With the exposure time fixed, the intensity between two plasma fields were able to be compared

directly.[125, 145, 308]

Thirteen 100 ms images were acquired of the plasma field for each test case. These images were processed

by subtracting the background counts and then averaged together. To further align the coordinate system

of the camera to the plasma field, a post-processing technique was employed next to determine electrode gap

space and to correct for misalignment. The image was investigated to determine the location of the electrode

faces and the line connecting the centers of each electrode. Some minor difficulty was encountered when

finding the location of the electrode faces due to saturation from cathode glow or lack of signal at the anode

face. These were minimized by false color image displays and by picking multiple points and using averages

to determine the actual location. After the points of interest were measured, the images were compared to

the measurement. Gap distance errors between the electrodes were found to be no more than 2 mm. The

alignment correction needed was found to average between 1◦ and 2◦, never to exceed 2◦.[125]

All of the plasma field intensities were imaged simultaneously with the spectroscopy measurements in

order to help quantify the field imaged through spectroscopy. Note, that the spectroscopy measurements were

made horizontally through a fused silica window in the side of the test section, while the visible images were

obtained vertically through a glass window on the top of the test section. While the plasma was relatively

axisymmetric, slight asymmetries were observed and therefore the plasma field was slightly dependant upon

the viewing angle. The most noticeable asymmetry was in the misalignment of the electrodes. While great

care was taken to align the electrodes, even misalignment of between one and two degrees (the typical

measured error) caused the plasma field to become visibly stronger on the side with smallest gap distance

between electrodes. Therefore the reader should be cautioned that comparing visible emission images to

spectroscopy images will involve slight mismatches and that only trend information should be extracted in

those comparisons.[145, 251, 308]

It was impossible to take visible imagery of the plasma field concurrently with particle image velocimetry

data, as the same camera was used for both techniques. The process involved in reconfiguring the camera

between PIV and visible intensity measurements involved changing lenses, recorder settings and refocusing.

Therefore it was impossible to perform realtime on the exact same plasma fields, as the reconfiguration

operation involved bringing the test section up to atmospheric pressure. And while the repeatability of
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the plasma field generation was relatively consistent (by generator settings and by observation), the same

electrode mismatch errors mentioned previously did occur. Again, caution must be wielded when comparing

measurements of light intensity with PIV data in that only trends between the two are valid for the data

were not collected simultaneously.

3.5.3 Uncertainty Estimates

Two uncertainties in the measurement of visible light intensity from the plasma field have been eluded

to in the previous paragraphs. This section will quantify the effects on the measurements made. The

first uncertainty was the measurement of gap distance. As previously mentioned, the error in measuring

gap distance was found to be a maximum of 2 mm. For typical gap spaces of 80 mm, this represents

an error of 2.5%. Since the alignment correction was found to be less than 2◦ and the correction was

applied to effectively eliminate misalignment, the alignment error will be neglected in further contributions

to downstream calculations. The position error of 2.5% with respect to gap distance is applied therefore to

both axial and tangential directions as a conservative estimate of uncertainty in position reported. Table 3.8

provides a summary of the uncertainties found here, where I is the intensity relative to maximum counts

(Imax = 65535), G is the gap distance between electrodes and x and r are axial and radial (tangential)

positions, respectively.[92]

Table 3.8: Propagation of Measurement
Uncertainties for the Plasma Imagery of
Visible Light Emission

Normalized Derivation Value
Error [%]

εx ∆x/G 2.5
εy ∆x/G 2.5
εI 2.179σI/Imax

√
13 0.2

Note that the estimate in uncertainty in relative intensity was calculated from the standard deviation,

σI , from one of the representative image samples and was found to be 247 counts. Since the number of

samples was 13, the student-T distribution was used to provide a factor of 2.179 as the confidence coefficient

for 95% interval. The uncertainty in mean relative intensity is given by ∆I = 2.179σI/
√

13 as outlined in

Grant and Owens.[156] The resulting uncertainty ∆I was then scaled by the maximum counts to produce

εI .[92]
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3.6 Temperature Measurement with Spectroscopy of the Second

Positive System of Diatomic Nitrogen

Spectroscopy is a calibrated technique of analyzing light emitted from various sources. It is a popular

technique, used to measure gas concentrations and compositions on distant planets as well as for measuring

combustion temperatures on this planet. In this case an imaging spectrometer is used to provide a vertical

line of rotational and vibrational temperature measurements by focusing in on a small part of the spectrum

to examine the light emitted from the second positive system of diatomic Nitrogen.[80, 113, 125, 131, 172]

The use of second positive system of diatomic Nitrogen to calculate rotational and vibrational temper-

atures by model matching in plasma fields has historical acceptance. Arc plasma temperature fields have

been measured this in atmospheric air this way.[132, 234] Additionally, an RF capacitively-coupled plasma

was generated in atmospheric air by use of microchannel electrodes, with spectroscopy providing the thermal

measurements.[309] Dielectric Barrier Discharge plasmas in atmospheric air have also been measured.[198]

At lower pressures, Palm et. al.[286, 384] used this technique to investigate temperatures in a CO laser,

which was pumped with an RF capacitively-coupled plasma in a chamber pressure varying from 0.1 to 1.0

atmospheres. Finally, DC glow plasmas have been investigated in the pressure ranges of this research, both

in quiescent Nitrogen [49] and supersonic to hypersonic flows.[341, 358]

Figure 3.15: Schematic of Imaging Spectroscopy
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Table 3.9: Description of Optical Components
in Figure 3.15, the Schematic of Imaging Spec-
troscopy

Item Description
A Lens, Spherical-Convex f = 600 mm
B Lens, Spherical-Convex f = 75 mm
C Iris

Figure 3.15 is a schematic of the setup for imaging spectroscopy. The setup of the test chamber is similar

to the PIV, LED and MTV experiments - noting the removal of any seed equipment here. The optical

components of which are detailed further in Table 3.9. Two spherical plano-convex glass lenses were placed

together with the convex sides towards each other in order to image a line about 8 cm high in the test section

onto the 1 cm tall slit at the entrance of the spectrometer. The image was shaped slightly by placing an iris

in the optical path to help eliminate light being emitted from the plasma field outside the region of interest

from entering the spectrometer. The imaging spectrometer was an ISA Triax series 190 spectrometer and

featured the ability to switch between three different diffraction grating mirrors. The grating used in this

experiment contained 2400 gratings per mm. This spectrometer also featured an adjustable slit, which was

set to 0.03 mm. The diffraction grating mirrors perform the same effect as a prism on the incoming light,

spreading it out onto the intensified charge-coupled device which was a model ICCD-576-S from Princeton

Instruments. The resulting wavelength resolution was 0.03 nm.[32, 22, 125, 131, 170]

3.6.1 Experiment Setup

To determine the broadband emission of the light being emitted by the plasma field, an experiment was

performed with an Ocean Optics S2000 fiber optic spectrometer. This spectrometer has a 5µm slit producing

0.3 nm resolution over wavelengths from 250 nm to 850 nm. Figure 3.16 shows the results of this experiment.

Note that the second positive system of diatomic Nitrogen is highlighted and that emission is relatively strong

and free of overlapping emission from other species.[80, 113, 125, 131, 170]

3.6.2 Test Procedures

Again the test procedure section begins with the calibration procedure. In this case an index card was

marked with black lines every 12.7 mm and placed at the focal point of the imaging spectrometer which

coincided with the centerline of the jet. The black calibration lines were aligned to be parallel with the jet

flow. These lines, when imaged, show up as dark regions on the ICCD and were used to provide a vertical

position calibration of the recorded images. The index card was illuminated by a hollow cathode lamp with
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Figure 3.16: Spectrum of Plasma Emission from Near Ultraviolet to Near Infrared

a sample of iron inside. The lamp stimulated the emission of numerous Iron lines in the spectral region of

interest.[125, 131]

Figure 3.17 (a) is a contour image of relative intensity of the index card with calibration lines illuminated

by the Iron sample hollow cathode tube lamp. Individual Iron emission lines show up vertically across the

sample and are cut horizontally by the dark lines from the calibration marks on the index card. Figure 3.17

(b) is a line of intensity formed by binning 30 rows of the image in panel (a) together, centered about 14.7

mm. The features used to perform the wavelength calibration are indicated by the letters in the figure.

The source for the calibration information was the NIST database, the results of which are tabulated in

Table 3.10. The relative intensities are listed as an aid to distinguish between the different lines and to

reject lines near the ones listed.[125, 131]

Table 3.10: Emission Lines of Iron
Used to Perform Spectral Calibra-
tion, Taken from NIST [313]

Index Wavelength Relative
Intensity

[nm] [%]
A 364.7842 19
B 367.9913 19
C 370.5566 15
D 371.9935 100
E 373.7131 75
F 374.5561 75
G 381.5840 19
H 382.0425 31
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Figure 3.17: Relative Intensity of Hollow Cathode Iron Emission Used to Calibrate the Imaging Spectrometer
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Figure 3.18: Relative Intensity of Black Body Emission at 2659 K Used to Calibrate the Imaging Spectrom-
eter
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Next the intensity response of the optical train from the test section through to the ICCD is calibrated

from a white light source created from a Tungsten lamp. The Tungsten lamp was calibrated by NIST

standard to a black body at a temperature of 2659 K. The intensity response of the system was then

corrected by a frequency dependant function which replicated the exponential decay of a black body source

at the calibrated temperature. Figure 3.18 shows a contour image of relative intensity of the lamp in panel

(a) with the binning to produce a line and subsequent correction process in panel (b). The lamp was 2.5 cm

high and was placed on the jet centerline in the focal plane of the imaging spectrometer.[125, 131, 313]

With the extensive calibration complete, data collection began. The optics, spectrometer and ICCD were

fixed to an optical breadboard and fastened to an optical table. The system was aligned to take readings in

a line 10 mm upstream from the face of the cathode. This was chosen as the baseline plasma measurement

location for two reasons. First, the location was far enough upstream to avoid the light emitted from the

cathode glow. The cathode glow was the plasma field created in the immediate vicinity of the cathode

and was not representative of the plasma field affecting the shear layer of the jet. Secondly, the location

10 mm from the cathode was in a region which was consistently illuminated for even the weakest plasma

fields. Some plasma fields did not provide uniform emission across the electrode gap, but near the cathode,

consistent emissions were recorded. Some plasma fields were mapped across the electrode gap by sliding the

breadboard table in a track to keep the system focus aligned with the jet centerline. The displacement of

the system from the baseline position was measured by a ruler, with marks every nearest mm.
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Figure 3.19: Sample of Spectrum Fitting Results

The emission of plasma spectra were recorded in batches of 50 images. The exposure time of the ICCD was

adjusted as required to obtain enough signal for processing. Dark images were taken for each measurement
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and also consisted of 50 frames recorded. All significant light sources were extinguished for both data and

dark field images to eliminate contamination from other spectra. The images were processed by another

custom MATLAB routine to first average the 50 frames of dark images. Then the data images were averaged,

subtracting the average dark frame from each image before averaging. Finally, nine lines were created by

binning 30 rows together. Separate calibrations of the Iron lines were made for each line to account for any

differences based on vertical displacement and variations in dispersion. The calibrations were applied to the

nine data lines, and included the transformation from location to wavelength, and the correction to intensity

from the black body radiation source. Next each of the measured spectra were curve fit in a FORTRAN

routine supplied by Dr. Nick Glumac at the University of Illnois at Urbana-Champaign, to a model of

the second positive system of diatomic Nitrogen. The model iterated until convergence and calculated the

vibrational and rotational temperature of Nitrogen by matching a modeled response to the measured and

corrected data. Figure 3.19 is a sample of the curve fit response.[125, 131, 132, 198, 234]

3.6.3 Uncertainty Estimates

Estimates of the uncertainty and error propagation were difficult to determine with this technique. Re-

searching similar experiments and investigating trends in the ability of the curve fitting routine to capture

changes in temperature, it was estimated that rotational and vibrational temperature measurements are

accurate to ±25 K and ±200 K, respectively. The location relative to the cathode face was uncertain to

within ±0.5 mm based on one-half the smallest increment on the ruler.[131, 152]

86



Chapter 4

Results and Discussion

This chapter documents the measurements conducted to characterize the plasma and its effect on the mean

and turbulence quantities of the jet. It is divided into the specific test techniques used to investigate the

jet flow fields. First, verification results are reported to investigate how well the seed particles track the

flow. Then, with adequate tracking characterized, particle based velocimetry techniques were used for the

quantitative measurement effort. The bulk of this chapter then focuses on the velocimetry results, examining

the effect plasma had on mean and turbulent measurements of the velocity field for various jet conditions.

Four different axisymmetric jets and their resulting shear layers were investigated to determine the influence

of a plasma field on them: perfectly expanded subsonic and supersonic jets, jets created by developing pipe

flow exhausting from a constant-diameter tube, and large scale structures created by forced laser energy

deposition into jet flows. The plasma field is documented next by examining the intensity of light emitted

in the visible spectrum. Finally, the plasma field is defined quantitatively by examining the rotational and

vibrational temperatures of diatomic nitrogen through spectroscopy of the emission of near ultraviolet light

from second positive system of diatomic nitrogen.

Figure 4.1 are a pair of photos of the plasma field. Note that flow is from left to right in this highly

underexpanded jet flow. The anode is on the left, with the cathode coated in black paint on the right. With

the plasma on, the barrel structure associated with the plasma field is visible at the jet exit through the

anode. Note the darker region in the center of the jet which represents the jet core region.

Run Conditions

Figure 4.2 shows the chamber pressure and equivalent Mach number of the jets which were tested in this

experiment. The experiment space in this figure is shown in terms of equivalent Mach number Mi on the

abscissa which is derived by using the measured pressure ratio and in terms of measured chamber pressure

on the ordinate. The letters designate a case identifier to aid in cross referencing. The primed letters (e.g.

H’) indicate that condition was tested using the anode modified with serrated conical feature. Cases without

the primed mark were tested using the flat-faced anode.
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(a) Plasma Off (b) Plasma On

Figure 4.1: Photos of the Jet and Plasma with Flow from Left to Right, Note the Barrel Shock of Highly
Underexpanded Jet is Visible with the Plasma On

Cases A, B, C, and E are experiments conducted on converging-diverging nozzles under pressure matched

conditions. Case E was tested at 8 torr vice 9 torr to achieve the proper pressure matching. Cases F, G and

H were conducted using a constant diameter nozzle. The constant-diameter nozzle was made of a tube, 13.3

diameters long. The resulting flow could be driven at subsonic or supersonic conditions with choking caused

by an aerodynamic throat created by a separation at the tube entrance. This nozzle design was chosen as an

alternative to the standard converging-diverging nozzles to produce increased turbulence in the core of the

jet, an effect of developing pipe flow. In addition to these 7 cases, two off-nominal, non pressure matched

conditions were examined. Case D represents an overexpanded jet, using the nozzle from Case C but with

a decrease in plenum pressure. Case U is a highly underexpanded flow created by a sonic orifice. These two

cases explore the possibility of plasma field influence on shocks and expansions.[36, 114, 130, 165, 194]

The goals of this experiment were to create stable, uniform, radio-frequency, capacitively-coupled plasma

fields and investigate its affect on the mean and turbulent velocities of compressible axisymmetric jets.

To that end, variations in jet exit speed were required in order to ascertain the plasma field influence on

compressibility and explains the predominant trend to run along lines of roughly constant chamber pressure

with increasing Mach numbers. Higher chamber pressures were desirable in this experiment in order to

match test conditions achievable in larger scale supersonic tunnels. However, the uniformity and stability of

the plasma field degraded significantly for chamber pressures over 10 torr which set a limit on the chamber

pressure for testing.[69, 145, 308]

Another constraint on the experiment and run conditions was due to particle seeding issues. In order
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Figure 4.2: A Summary of the Experiment Space by Chamber Pressure and Equivalent Mach Number

to provide adequate seed particle concentration, the flow of Nitrogen and seed into the plenum chamber

had to be controlled by a small diameter sonic orifice. Variable regulation by means of a ball valve had a

devastating impact on seed particle concentration and uniformity in the flow. The diameter of the upstream

sonic orifice effectively set the mass flow - and vacuum pump performance set the chamber pressure based on

mass flow from the jet (combined with a regulated vent downstream of the test section). The nozzle design

and pressure matching process became complicated as the upstream sonic orifice and the downstream test

nozzle interacted with each other.[25, 219, 297]

Table 4.1: Estimation of Jet Exit Conditions

Po (1) Pe (1) To (1) Mi (2) Ui (2) Ti (2) Me (3) Ue (1) Te (3) De (1) ReD (3)
[torr] [torr] [K] [ND] [m/s] [K] [ND] [m/s] [K] [mm] [ND]

A 12.7 9.15 289 0.70 231 263 0.69 229 264 20.8 4470
B 20.5 9.15 293 1.14 353 232 1.13 350 233 15.7 8501
C 71.0 8.00 292 2.08 530 157 2.03 523 160 11.3 22430
D 62.0 8.00 293 1.99 518 163 1.94 510 167 11.3 20208
E’ 16.5 5.00 296 1.43 421 210 1.35 404 217 9.5 6133
F’ 8.2 5.00 293 0.87 283 254 0.75 247 263 9.5 2637
G’ 16.5 5.00 295 1.43 420 209 1.27 387 222 9.5 5605
H’ 34.0 5.00 294 1.91 507 170 1.63 460 192 9.5 8733
(1) Measured Quantity
(2) Estimated From Pressure Ratio, Assuming Isentropic Flow Through Nozzle
(3) Estimated From Plenum Temperature and Measured Exit Velocity

In order to better quantify jet exit conditions in the absence of temperature measurements, the following

approach is applied to both converging-diverging nozzles and constant-diameter tubes. First, the plenum

temperature is taken as the stagnation temperature at the jet exit. Then, the measured exit velocity is
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used to estimate the exit Mach number, temperature, density and viscosity - knowing that the developing

pipe flow is not isentropic. This assumption appears reasonable, given that in all cases tested, the measured

exit velocity is within 15% of the equivalent isentropic exit velocity for the same pressure ratio. Table 4.1

summarizes the exit conditions for the test cases. In the first section on the left in Table 4.1, each of the

conditions is labeled by the case identifier introduced in Figure 4.2. Next, the measured pressures and

temperatures are listed. The plenum pressure Po and temperature To were measured by a CVT-275-101

Pirani style pressure transducer and an Omega K-type thermocouple through ports into the plenum chamber.

The chamber pressure Pe was also measured by a CVT-275-101 transducer through a port drilled into the

test section. Using the measured pressure ratio and stagnation temperature from the plenum, the following

isentropic conditions were calculated: Mach number Mi (also referred to as equivalent Mach number for off-

design cases), exit velocity Ui and exit temperature Ti. These are compared in the next block of Table 4.1

with the measured exit velocity Ue and corresponding Mach number Me, and static temperature Te which

were calculated based on the measured exit velocity and assume adiabatic flow. Finally, based on Te and

the measured Pe (assuming matched flow) the exit density and viscosity were calculated to determine the

Reynolds number. The characteristic length for an axisymmetric jet was the jet exit diameter De which

is presented as well. While some approximations were applied in calculating these parameters, they are

reasonable given the care taken to achieve near-matched conditions for these jets. In the case of the flow

created by a constant-diameter nozzle, there is a pressure loss associated with the developing pipe flow. This

does have an influence the total temperature, however the influence is believed minor.[14, 40, 297]

4.1 Characterization of Particle Tracking

Although particle image velocimetry (PIV) is a reliable and popular technique, its accuracy can be com-

promised with poor choices in flow seeding. In this case, the rarefied conditions of the test chamber and

high flow speeds of the jet can couple to produce particle lag. Particle lag results when seed particles which

serve as flow markers are too large or too heavy to accurately track the flow field of interest. In the rarefied

gas of the test section, quantum molecular collision dynamics govern the particle motion. This effect serves

to increase the distance a particle travels before it reaches local conditions, after a sudden change when

compared to the continuum dynamics of higher density flows.[12, 227, 307, 323, 339]

Knowing that particle lag exists and is unavoidable (although able to be minimized), the next two

sections take aim to quantify the effects of particle lag on the uncertainty of measuring mean and turbulent

velocities. This section focuses on the uncertainty of mean velocity measurements, while Section 4.2 looks

90



at the turbulent velocities. The verification of good particle tracking can be accomplished in two ways. If a

more accurate measurement of velocity can be made, then comparisons between the PIV measurement and

the ‘truth’ can be quantified. This technique is employed for the mean flow verification. Secondly, much

research has been accomplished in modeling particle motion through a gas flow. Of specific interest to this

research is the modeling of particles under compressible and rarefied environments. Two models will be used

in the next section to determine the ability of particles to track turbulent velocities and turbulent features

of the jets tested.[227, 323]

4.1.1 Particle Image Velocimetry Verification by Means of Molecular Tagging

Velocimetry

The current section describes the results of an effort to verify adequate particle tracking of rarefied flow of

axisymmetric jets at the same subsonic and supersonic speeds tested. It is very important that the seed

particles used as motion trackers accurately represent the flow features being measured. To confirm the

accuracy of seed particle tracking, four axisymmetric jets were compared by measuring exit velocity using

PIV and molecular tagging velocimetry (MTV). The MTV data was considered to be the most accurate

measurement of velocity, given the measurement tracer was molecular acetone vapor which does not suffer

with particle lag problems in tracking the flow.[217, 175, 176, 397]

Table 4.2: Estimated Properties of Saturated Acetone Va-
por in Nitrogen Gas

Property Value
Vapor Pressure 194.0 [torr]
Molar Concentration 25.5 [%]
Molecular Weight 35.7 [g/mol]
Specific Heat at Constant Pressure 815.4 [J/Kg-K]
Ratio of Specific Heats (Assumed) 1.4 [ND]

Although the effect of Acetone seeding on the Nitrogen test gas was minimal, both PIV and MTV

measurements reported in this section were made using the Nitrogen-Acetone gas mixture to eliminate any

differences due to Acetone injection. The concentration of Acetone in Nitrogen was assumed to be saturated

based on the atomizing technique. Lower concentrations were attempted, but the signal strength available

for MTV imaging was too low. The partial pressure of acetone at 294.26K was calculated to be 194.0 torr.

The atomizing process occurred at room pressure before being introduced into the vacuum chamber,

therefore from the partial pressure calculation, the molar concentration was determined to be 25.5%. Using

the molar concentration, the gas constant was adjusted accordingly based on the molecular weights of Acetone
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and Nitrogen. Not being able to measure the ratio of specific heats, it was assumed to be 1.4. Table 4.2

summarizes the properties of the nitrogen/acetone mixture. To confirm assumption of an unchanged ratio

of specific heats, the exit velocities of two supersonic jets formed from converging-diverging nozzles and

matched pressure conditions were measured and the results summarized in Table 4.3. The table represents

the measured quantities of plenum pressure Po, and temperature To, chamber pressure Pe and exit velocity

Umeasured. From the pressure ratio, the equivalent Mach number Mi and exit velocity Ui are calculated based

on the assumptions of isentropic flow and γ = 1.4. Given the excellent agreement between the measured

exit velocity, Umeasured and the exit velocity calculated assuming isentropic flow, Ui (with measurements of

plenum pressure and temperature, and chamber pressure) - a ratio of specific heats of 1.4 appears valid.[14,

40, 213, 297]

Table 4.3: Exit Velocities for Two Supersonic
Converging-Diverging Jets to Confirm the Assumed Ra-
tio of Specific Heats

Mi Po Pe To Ui Umeasured

[ND] [Torr] [Torr] [K] [m/s] [m/s]
2.1 71.0 8.00 289.2 468 466
1.1 20.5 9.15 289.3 312 315

Table 4.4 shows the jet conditions which were used to compare MTV and PIV measurements in this

section. The case identifiers presented have the MTV subscript to indicate that although the nozzles used

are the same for the corresponding cases, that the Nitrogen gas containing Acetone is exhausting at a slower

speed than pure Nitrogen due to the increased molecular weight of the gas mixture. Therefore the reader is

cautioned from making comparisons between the Acetone flows and the pure flows in other sections of this

chapter. Case EMTV is presented last in the sequence as it is the case where the nozzle was a conventional

converging-diverging nozzle resulting in matched flow conditions. Cases FMTV , GMTV and HMTV are

created by the developing pipe flow of flow exhausting from a constant-diameter tube, 9.5 mm in diameter

and 12.7 cm in length and will be used to investigate the effects of compressibility on the PIV seed particles.

At the end of this section, the highly underexpanded jet (Case U) will be examined to show an example

of the effect of a poor seeding strategy. The particle tracking models in the next section suggest the worst

case particle latency region occurs at the most rarefied conditions near the jet exit and therefore, only 5 torr

pressure chambers were scrutinized.

Figure 4.3 shows contours of axial velocity measurements from PIV, with a white line indicating the

location of MTV data used to check the accuracy of the PIV measurements. The jet described in Figure 4.3

is formed by developing flow created by a constant-diameter tube 9.5 mm in diameter and 12.7 cm long.

92



Table 4.4: Test Conditions Examined with Mole-
cular Tagging Velocimetry and Particle Image Ve-
locimetry Using Nitrogen Saturated with Acetone

Po Pe To Mi Ue−MTV

[torr] [torr] [K] [ND] [m/s]
HMTV 34.0 5.00 294 1.9 433
GMTV 16.0 5.00 294 1.4 327
FMTV 6.5 5.00 294 0.6 174
EMTV 16.0 5.00 294 1.4 362
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Figure 4.3: Contours of Axial Velocity Measured by Particle Image Velocimetry, Showing the Location of
the Molecular Tagging Velocimetry Line

The pressure ratio used to drive the flow would result in an isentropic Mach number of 1.9. Shock and

expansion structures are present and displays as the diamond shaped deceleration along the centerline of

the jet in the contour image. Figure 4.4 is a cross-section of axial velocity at 1.1 diameters from the anode

face which compares the MTV measurement to the PIV measurements for two particle sizes. The shock

structure is evident in the MTV result as the velocity decrease along the centerline. The 0.1µm diameter

particles appear to track the flow well until the shock structure was encountered, and at this location the

PIV results show a 3% higher maximum velocity than the MTV baseline. Conversely, the larger, 1.0µm,

particles indicate a 6% lag in peak velocity, having not accelerated to core velocity before encountering the

shock structure and therefore report a lower maximum velocity than the MTV baseline. Note that the PIV

data shows excellent agreement to baseline data in tracking the mean structure of the shear layer, the region

of most concern to this research effort.[219]
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Figure 4.4: Comparison of Axial Velocity 1.1 Diameters from the Anode Face Measured by Molecular
Tagging Velocimetry and Particle Image Velocimetry of a Flowfield Formed From Developing Flow Exiting
a Constant Diameter Tube, Driven at a Pressure Ratio Equivalent to an Isentropic Mach Number of 1.9
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Figure 4.5: Comparison of Axial Velocity 1.1 Diameters from the Anode Face Measured by Molecular
Tagging Velocimetry and Particle Image Velocimetry of a Flowfield Formed From Developing Flow Exiting
a Constant Diameter Tube, Driven at a Pressure Ratio Equivalent to an Isentropic Mach Number of 1.4

Figure 4.5 compares MTV data to PIV measurements at the same location, with a pressure ratio equiva-

lent to an isentropic Mach number of 1.4. In this case the 0.1µm diameter particles show excellent agreement

to the MTV baseline, while the 1.0µm particles are still lagging the flow with now a 10% error. Note here

that when measuring shear layer thickness, the PIV measurements tend to result in a larger calculated thick-

ness than those calculated from MTV data. The shear layer thickness is calculated as δ10, where the radial

position of 90% of the centerline (maximum) velocity of the jet is subtracted from the radial location of

10% of the velocity. The PIV data tends to find the 10% location well, but the location of the 90% velocity

tends to be slightly smaller, making the resulting difference between the two positions larger. For the 0.1µm

particles, the error in this case is 1%, and of the four cases investigated in this section, the maximum error

is 3%. The 1.0µm particles however, show much larger differences, indicating the need to take care in using

shear layer calculations from PIV measurements.[328, 383]
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Figure 4.6: Comparison of Axial Velocity 1.1 Diameters from the Anode Face Measured by Molecular
Tagging Velocimetry and Particle Image Velocimetry of a Flowfield Formed From Developing Flow Exiting
a Constant Diameter Tube, Driven at a Pressure Ratio Equivalent to an Isentropic Mach Number of 0.6

r/D [ND]

U
[m

/s
]

-1 0 1

0

100

200

300

400

500

Particle Imaging Velocimetry
1.0 m Particles

Molecular Tagging Velocimetry

Particle Imaging Velocimetry
0.1 m Particles

µ

µ

o

Figure 4.7: Comparison of Axial Velocity 1.1 Diameters from the Anode Face Measured by Molecular Tagging
Velocimetry and Particle Image Velocimetry of a Axisymmetric Jet From a Converging-Diverging Nozzle at
Mach 1.4
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Continuing now with a pressure ratio which corresponds to an equivalent Mach number of 0.6, Figure 4.6

compares MTV data again to PIV measurements at 1.1 diameters from the anode face. The 0.1µm diameter

particles again show excellent agreement (3% difference) to the MTV baseline, while the 1.0µm particles are

lagging the baseline flow with an error of 15%.

The next comparison is between MTV and PIV measurements of axial velocity for a jet created by a

converging-diverging nozzle at Mach 1.4. Figure 4.7 describes the velocity measurements at 1.1 diameters

from the anode face. Here particle lag effects are evident with both particle diameters as a 4% difference for

the 0.1µm diameter particles and 7% error for the larger 1.0µm diameter particles.

Table 4.5: Comparison of Maximum Axial Velocity Measurements for
Varying Particle Size and Varying Pressure Ratios

Mi Po Pe UMTV UPIV,0.1µm UPIV,1.0µm

[ND] [torr] [torr] [m/s] [m/s] [m/s]
HMTV 1.9 34.0 5.00 433 446 407
GMTV 1.4 16.0 5.00 327 332 296
FMTV 0.6 6.5 5.00 174 168 148
EMTV 1.4 16.0 5.00 362 346 335

Table 4.5 summarizes the findings of the particle tracking effort. The particles chosen to perform further

experiments with were the smaller 0.1µm diameter particles. Note that while there are errors in tracking the

centerline velocity near the exit of the jet, these represent the worst case tracking errors and that even at

this location the tracking error for the smaller particles is under 5%. This difference is considered adequate

for continued investigation into the mean flow features of rarefied axisymmetric jets in the absence of strong

shock-expansion structures.[219, 249]

Further downstream, particle lag is minimized due to lower flow field acceleration away from the jet

exit and increased time for quantum collisions to bring the particles up to the flow conditions. Particle

lag effects were minimized in nozzle design, by two techniques. For the converging-diverging nozzles, the

diverging region was lengthened an order of magnitude over original designs to provide increased distance

for molecular collisions inside the nozzle. For the constant-diameter nozzle, the increased turbulence created

by the developing pipe flow has a natural increase in collision rate to assist in particle tracking.[14, 40, 297]
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Figure 4.8: Schematic of a Highly Underexpanded Flow Created by a Sonic Orifice

The final case to be investigated was the highly underexpanded jet created by flow exiting a sonic orifice.

The ability to track the flow features represented the worst case scenario for particle tracking and it was

not expected that the particles would track this flow. The sonic orifice is aptly named because the flow

chokes at the nozzle exit. The resulting near field flow is left to form its own nozzle with strong reflected

shocks and expansions in order to equalize the pressure differential. The near field flow exiting from a sonic

orifice is described in Figure 4.8. The barrel shock and Mach disk shown have been studied extensively and

reasonably accurate empirical formulas exist to describe the location and diameter of the Mach disk based

on the pressure ratio used to drive the jet and the diameter of the sonic orifice.[37, 100, 221, 228, 283]

Table 4.6: Configuration for the Highly
Underexpanded Jet Created by a Sonic
Orifice

Mi Po Pe De

[ND] [torr] [torr] [mm]
UMTV 2.8 76.0 8.00 8.2

Next, the flow produced from a highly underexpanded jet formed from a sonic orifice was measured using

both PIV and MTV. The flow was mapped with MTV, in a series of 16 lines spaced axially between 0.5

and 4 mm apart, with the tightest spacing occurring at the normal shock. Figure 4.9 shows the contours

of axial velocity with the Mach disk clearly indicated by the sharp drop in velocity at 1.7 diameters from

the jet exit, where the flow of the jet is from left to right. Table 4.6 describes the test conditions for the

underexpanded jet. From the contour of axial velocity, many of the regions in Figure 4.8 are visible. The

Mach disk, previously mentioned is sandwiched between the accelerating flow on the left and the subsonic

98



x/D [ND] (From Jet Exit)

r/
D

[N
D

]

1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

600
550
500
450
400
350
300
250
200
150
100
50
0

U [m/s]

Figure 4.9: Contours of Axial Velocity Measured by Molecular Tagging Velocimetry of a Flow Field Created
by a Sonic Orifice

region on the right, downstream of the normal shock. The weak shock and expansion waves above and

below the Mach disk region produce flow which is still supersonic downstream of the point of the Mach disk.

Some detail of the slip lines are also visible, where the outer supersonic flow is working to accelerate the

subsonic flow which passed through the normal shock. It appears that a second compression region (through

either a normal shock or oblique shock/compression waves) occurs at about 3.5 diameters from the jet exit.

MTV measurements were made at 0.5 diameter intervals this far downstream which preclude more detailed

analysis of the shock structure there.[37, 221]
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Figure 4.10: Comparison of Axial Velocity Along the Jet Centerline Measured by Molecular Tagging Ve-
locimetry and Particle Image Velocimetry of a Flow Field Created by a Sonic Orifice, Showing the Degrading
Effect of Increasing Particle Size

Figure 4.10 compares the centerline axial velocity for the underexpanded jet as measured by MTV and

PIV. Two particle sizes were generated to emphasize the effect of poor particle tracking. While the normal

shock location can be determined accurately by all three techniques (by looking for the slope change in PIV

curves the shock location can be determined to within a grid point axially), the particle latency in these

rarefied flow conditions is extreme. It is clear that accurate velocity information is not available from PIV

for rarefied conditions in the presence of strong shocks or expansions and extreme care must be taken in

interpreting PIV results if these features are present. The particles used exclusively for measuring the effect

of plasma-on mean and turbulent fluctuations of velocity are nominally estimated to be 100nm in diameter

and are represented by the red line in Figure 4.10.[219]
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Summary of Important Findings from Molecular Tagging Velocimetry

Here is a summary of the significant conclusions obtained in the comparison of particle image velocimetry

and molecular tagging velocimetry to measure the effect of particle lag on mean flow measurements.

• Near the exit (1.1 diameters downstream of the anode), the effects of particle latency on mean flow

determination resulted in up to a 5% error in PIV measurements of centerline axial velocity for the

100 nm seed particles. The larger 1.0µm particles resulted in errors of up to 15%. These larger seed

particles were not used further in this testing.

• In general, the 100 nm seed particles showed excellent tracking ability of the mean flow of the jet,

which is expected to improve as the flow gradients shallow and the jet core is dissolved.

• Mean flow tracking for both 100 nm and 1.0µm diameter particles were not acceptable in the presence

of strong shocks. Flow test conditions under evaluation in the remainder of this effort minimize the

effect of shocks through pressure matching jet conditions and focusing on flow features much further

downstream then the expected location of shock structures.

4.1.2 Modeling Approach to Accuracy Estimation for Turbulence

Measurements

Since PIV is a primary diagnostic tool used in this study and due to the problems associated with the

particle motion representing the fluid motion, the ability of the particle to track with the flow needed to be

accessed. Two techniques are used in the assessment. In the previous section, velocity fields made by PIV

using particles were compared to a velocity field measurement made with molecular phosphorescent tags.

Those molecular tags were on the order of the diameter of the gas they track and provide a more accurate

measurement of the velocity from which comparisons were made regarding particle tracking. Next, in order

to quantify the particle tracking of fluctuating velocity measurements, a model based validation approach is

used. Two models are presented. The first model of Samimy and Lele [323] will be used later to estimate the

uncertainty in a seed particle to track velocity fluctuations when measured by PIV. The model of Loth [227]

will be described next to provide an estimate in the particle’s ability to follow rapid deceleration in the shear

layer. Both models will be employed in the results section to quantify uncertainties under measured test

conditions.

There is a substantial art in placing particles into the flow which have a larger optical return than the

surrounding flow which is to be measured. These larger particles may not follow the flow features of interest.
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To that end, some preliminary calculations are needed to ensure proper particle characteristics are selected.

Three general types of seed particles are available for flow measurement. Small solid particles like glass beads

or aluminum salt crystals can be generated in sub-micron diameters and provide relatively uniform particle

sizes. However, these particles are incompatible with the vacuum pump system and will not be considered

for this effort. The second popular type seed particle is the fluid droplet.

These droplets are typically formed with air under pressure forced through low viscosity oil in an atomizer.

For supersonic flows, water cannot be used, as it freezes into crystals of a significantly larger diameter than

the original droplets. An ideal fluid would have the same density as the flow which it was trying to track.

A fluid with low density and low freezing point is difficult to find at a reasonable price, therefore typical

fluids of interest are significantly more dense than the surrounding air flow. This difference in density allows

some simplification of the corresponding two-phase fluid dynamics, namely ρdroplet/ρfluid � 1. Consider a

droplet which is formed into a perfect sphere. If we examine this droplet surrounded by a viscous fluid, the

Reynolds number (based on particle diameter) is Redp
� 1. Therefore the particle drag follows the Stokes

drag law if the fluid is incompressible. If the particle is in a fluid which undergoes a step change in speed,

the particle speed can be characterized by Equation 4.1.[219, 307]

∆U(t)particle = ∆Ufluid

(
1− e(−t/τs)

)
(4.1)

The relaxation time for a Stokes particle in Equation 4.1 is given by τs = ρpd
2
p/18µf . Given all of the

assumptions used to derive the relaxation time, it does not produce a value which can be used to quantify

or correct the actual particle tracking errors. However, this parameter is very useful in providing relational

comparisons between various seed particles to select desired qualities. The relaxation time calculated in this

manner for a 1 µm particle of olive oil (ρp = 860Kg/m3) in air at room temperature (295 K) is τs = 2.6µs,

using Sutherland’s Law for the viscosity of air based on temperature T in Equation 4.2.[383]

µ[Pas] ≈ 1.716× 10−5[Pas]
(

T

273[K]

)(3/2) 384[K]
T + 111[K]

= 1.823× 10−5[Pas] (4.2)

Empirical corrections to a particle in compressible flows where the Reynolds Number is not necessarily

small are available. Many model’s exist based on the flow conditions. Walsh [381] provides an excellent

archive for 7 different methods and compares each to experimental data. Based on an empirically corrected

drag coefficient for a sphere, the resulting correction to the relaxation time is given by Equation 4.3 on

the next page, where ∆U = |Uparticle − Ufluid|, Mr = ∆U/
√

γfRfTf , Rer = ρf∆Udp/µf and CDStokes
=
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24/Rer.[379]

τcorrected = τs
CDStokes

CD
=

ρpd
2
p

18µf

CDStokes

CD
(4.3)

To investigate the quality of seed particles for this investigation, consider an ideally expanded M=1.2 jet

from a stagnation temperature of 295 K exhausting into a 5 torr chamber which undergoes a step velocity

change of 100 m/s. In the core of the jet the temperature is 229 K which yields a mean free path of 6.5µm

(8.3µm at the chamber temperature of 295 K). The Knudsen Number for a 1µm particle is 6.5, therefore a

correction for quantum collision dynamics is required. The relative Mach Number and Reynolds Number at

the core temperature are Mr = 0.33 and Rer = 0.07, respectively. In this case, only a correction for quantum

collision effect is required. The empirical correction to spherical drag coefficient for Knudsen Number effects

is given in Equation 4.4, where Kndp = kTf/
√

2πσ2pfdp, k is the Boltzman constant (1.38×10−23J/K) and

σ is the molecule diameter which is 407 pm for air. The correction to drag coefficient is substituted into the

relaxation time equation and provided in Equation 4.5. The corrected relaxation coefficient for the example

of a 1µm particle of olive oil at room temperature and 5 torr is τp = 61.3µs, which is significantly higher

than the Stokes approximation of 2.6µs.[379, 381]

CD =
24

Rer(1 + 2.7Kndp
)

(4.4)

τp =
ρpd

2
p

18µf
(1 + 2.7Kndp

) (4.5)

To provide a meaningful evaluation of the particles a fluid time scale is needed. Samimy and Lele [323]

studied the problem of particle tracking in compressible free shear layers with convective Mach numbers of

0.2, 0.4 and 0.6 and found that a ratio τ = τp/τf < 0.2 (where τf is the fluid time scale) produced an error

of 2% in the measurement of velocity fluctuations by PIV. The fluid time scale for the compressible shear

layer was determined to be τf = 10δw0/(U1 + U2), where U2 = 0 for this investigation and δw0 is the initial

vorticity thickness. This experiment could not collect velocity profiles at the jet exit, in order to determine

the initial vorticity thickness. Therefore, recognizing that vorticity thickness was on the order of the shear

layer thickness, the following procedure was used to estimate initial vorticity thickness. First, Samimy and

Lele determined, for their free shear flow jets studied, the initial vorticity thickness resulted in a Reynolds

number Reδ = ρ1(U1 − U2)δw0/µ1 to lie in the range from 100 to 400. Therefore, to estimate the fluid time

scale for this investigation a Reδ of 250 was used. The resulting value of δw0 was then compared to the

first available downstream shear layer thickness, calculated from the PIV measurements. In all cases, the

estimate of δw0 was on the same order as the closest shear layer thickness measurement.
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Table 4.7: Estimation of Particle Tracking of Turbulent Velocities

x/De M1 U1 T1 τs Knp τp δωo τf τ ∆σu

U
[ND] [ND] [m/s] [K] [µ s] [ND] [µ s] [mm] [µ s] [ND] [%]

A 3.2 0.65 215 267 0.028 41.1 3.169 1.17 54.316 0.06 0.9
B 4.5 1.05 330 237 0.031 36.4 3.100 0.60 18.107 0.17 2.3
C 6.2 1.93 507 166 0.042 29.1 3.380 0.23 4.473 0.76 8.6
D 6.2 1.74 475 181 0.039 31.8 3.408 0.25 5.242 0.65 7.5
E 11.3 0.79 258 258 0.029 72.5 5.735 0.80 31.243 0.18 2.4
F 11.4 0.50 171 276 0.028 77.6 5.813 1.93 113.111 0.05 0.8
G 11.3 0.70 230 264 0.029 74.3 5.763 0.89 38.728 0.15 2.0
H 11.3 0.99 315 242 0.031 68.1 5.667 0.57 18.122 0.31 3.9

Using these estimations for exit conditions found in Table 4.1, the particle time scales and fluid flow time

scales are calculated following the procedure outlined previously in this section. Table 4.7 steps through

each case, for the furthest downstream station where turbulent quantities are presented. Uncertainty values

increase at locations closer to the jet exit, however the increase was less than one percent in most cases

and therefore considered negligible for the focus of this research which was interested in the impact further

downstream. The table begins on the left by defining the conditions of the jet in the region of interest. The

case identifier is used again here for cross reference. The location is shown as distance from the anode face,

scaled by the jet exit diameter and is the furthest downstream location where turbulence measurements

are made. The Mach number, centerline velocity and temperature are subscripted with a ‘1’ in free shear

nomenclature to designate the high speed flow and represent the centerline values of the jet at this location.

Note that it is not possible to use Ue here as the centerline velocity decreases for a free jet as it travels

downstream. The velocity is measured from PIV, while the temperature and Mach number are calculated

based on the assumption that total temperature measured in the plenum is the same total temperature of the

flow at this location. Next, the analysis of time scales is performed. The Stokes time scale τs is calculated

based on the incompressible Stokes drag on a sphere by τs = ρpd
2
p/18µ1 where the subscript p describes the

seed particle properties (ρp = 860 Kg/m3, and dp = 100 nm) and µ1 is found from Sutherland’s Law based

on T1. The Knudsen number of the particle is based on the diameter of the particle and is determined by

Knp = kT1/
√

2πσ2
1p1dp, where k is the Boltzman constant, σ1 is the molecule diameter (407 pm for air is

used here) and p1 is the measured chamber pressure. An empirical correction is applied for the effects of

rarefied gas to create the particle time scale τp = τs(1 + 2.7Knp). Next, the fluid time scale is determined.

The characteristic length scale needed is the initial vorticity thickness which is estimated and compared to

the measured shear layer thickness. The Reynolds number used to estimate the initial thickness is based

on measured exit velocity using a viscosity and density based on measured chamber pressure and estimated

static temperature.
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Then, the fluid time scale τf = 10δωo/U1, is calculated. The time scale ratio τ = τp/τf is then used to

determine an uncertainty in velocity measurement ∆u/U from a curve fit of the results found in Samimy and

Lele.[323] Finally, the contributions of particle tracking errors are combined using L2 norm. To provide the

most conservative approach, the uncertainty ∆σu/U from Table 4.7 is added directly to the uncertainties

calculated from shear layer data used for PIV estimates. Given the large root mean square fluctuations of the

shear layer and the advantage of 4000 samples, the resulting propagated uncertainty is effectively unchanged.

The propagated uncertainty on the standard deviation of axial and tangential velocity εσu and εσv , respec-

tively was between 2.3% and 2.6% for all cases tested, inclusive of the added particle tracking uncertainty.

The calculations conclude that particle tracking appears to be adequate for turbulent measurements of the

velocity field with particle image velocimetry.[92, 183, 383]

The next model was assembled by Loth [227] and is much more detailed, providing corrections for

Knudsen number effects, Reynolds number effects and compressibility effects. The derivation of the model

can be found in the article by Loth, while the steps used to employ the model for this situation will be

described in detail here.

Four subscripts are used to describe the various conditions required to feed the semi-empirical model

about to be presented. The properties of the particle such as density, diameter and temperature are desig-

nated by the subscript p. Conversely, the surrounding fluid properties are indicated by subscript f . And

when considering the fluid of an axisymmetric jet, the convention of free shear layers are adopted where

subscript 1 designates the high-speed flow (jet centerline conditions in this case) and subscript 2 indicates

the low speed flow which is considered stagnant in this experiment. The 1 and 2 subscripts are required

at times to indicate the shear characteristics at a particular location downstream of the jet exit where the

jet exit velocity is not an appropriate value to use. With these considerations in mind, the model begins

by looking at the particle Reynolds number Mach number and Knudsen number, shown in Equations 4.6

through 4.8, respectively.

Rep =
ρf (Up − Uf )dp

µf
(4.6)

Mp =
Up − Uf√
γfRfTf

(4.7)

Knp =
√

πγf

2

(
Mp

Rep

)
(4.8)

Note here that the characteristic velocity used is the relative velocity of the particle with respect to the

surrounding gas flow. In general the particle is treated as a solid sphere and therefore the fluid properties

of temperature (Tf ), density (ρf ) and viscosity (µf ) are used. To determine the best model to use, as some
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variations of the model occur depending on the regime being modeled, a rough estimate of Rep, Mp and Knp

are needed now. Given the very small size of the particle diameters used (100 nm), the Reynolds number can

be taken to below unity for all conditions encountered. Compressibility effects could play a significant role,

as particle Mach numbers range from 0.5 to 1.1 and are detailed more in the results section. Finally, the

rarefied condition of the gas in the vacuum chamber places the particle dynamics firmly in the free-molecular

region with Knudsen numbers ranging from 100 to 200. Knowing these estimated values provides direction

through the modeling to follow.[227]

Using the drag coefficient of a Stokes sphere as a baseline (CDs
= 24/Rep), corrections will now be applied

to account for the effects of viscous, compressible, rarefied flow. A very slight correction (less than 1%) to

the drag coefficient CD is applied to account for Reynolds number effects when Rep < 800 in Equation 4.9.

fRep
= 1 + 0.15Re0.687

p (4.9)

Where the corrected drag is given by CD,Re = CDs
fRep

.[227]

Next, the effect of free molecular flow about the sphere, and the resulting Maxwellian distribution of

particle dynamics will be accounted for with a multiplicative correction fKnp . The Knudsen number for

the particles of interest lie in an intermediate region between continuum flow and free molecular flow and

therefore the correction factor is

fKnp =
15cw − 6c2

wKnp + (1616cw + 4π)(c2
w + 2)Kn2

p

15cw + 24c2
wKnp + 36cw(c2

w + 1)Kn2
p + 72(c2

w + 2)(cw + 1)Kn3
p

(4.10)

Where the factor cw is approximately 1.22. The combination of corrections so far produces an intermediate

drag coefficient CD,Re,Kn = CDs
fRep

fKnp
. Given that the particle dynamics are rarefied and compressible,

the molecular speed ratio S is introduced and is related to the particle Mach number as s = Mp

√
γf/2. A

compressibility drag coefficient for free molecular flows is then given in Equation 4.11.

CD,M =
(1 + 2s2) exp(−s2)

s3
√

π
+

(4s4 + 4s2 − 1)erf(s)
2s4

+
2
3s

√
π

Tp

Tf
(4.11)

The next intermediate drag coefficient is created by correcting CD,M for finite Reynolds numbers in Equa-

tion 4.12.

CD,M,Re =
CD,M

1 + (0.613C′D,M − 1)
√

Rep/45
(4.12)

Note that C′D,M results from recalculating Equation 4.11 with Tf substituted in for Tp.[227]

Finally, compressibility effects are combined with the effects of Reynolds number and Knudsen number
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through Equation 4.13

CD =
CD,Re,Kn + M4

pCD,M,Re

1 + M4
p

(4.13)

Thermophoretic forces were not accounted for here, as the particle temperature and the gas temperature

were relatively close to each other during normal testing. The effect of the plasma field on the particles

by thermophoresis or by electrical forces was investigated by observing particles in the chamber while the

plasma field was cycled on and off. The particles drifted toward the chamber walls at a slow rate, estimated

to be under 1 m/s due to thermophoresis. The particles mass and electrically neutral properties combine to

minimize reactions to the oscillating electric field generated in the plasma.[54, 145, 227, 308]

Table 4.8: Estimation of the Uncertainty in Particle Tracking of Shear Layer Thickness

x/De ∆U Mp Rep Knp CDS
CDLoth

τp ∆x10

[ND] [m/s] [ND] [ND] [ND] [ND] [ND] [ns] [µm]
A 0.5 229 0.48 0.0060 118.1 0.20 53.1 0.109 0.070
B 0.7 350 0.73 0.0092 118.1 0.20 30.3 0.214 0.208
C 0.9 522 1.09 0.0120 135.1 0.18 15.1 0.521 0.756
D 0.9 510 1.07 0.0117 135.1 0.18 15.7 0.484 0.686
E 2.3 404 0.96 0.0066 216.2 0.11 19.0 0.222 0.284
F 2.4 247 0.85 0.0058 216.2 0.11 23.9 0.160 0.179
G 2.3 387 0.52 0.0036 216.2 0.11 48.6 0.066 0.045
H 2.3 460 0.81 0.0056 216.2 0.11 25.8 0.144 0.155

The purpose of Table 4.8 is two-fold. First, the semi-emperical approach of Loth [227] for particle tracking

is utilized. This model provides a much more rigorous development of particle drag coefficient and therefore

serves as a check of the technique employed by Samimy and Lele [325]. The particle time factor, τp reported

in Table 4.8 is the exponential decay rate for a particle to track a step decrease in velocity from the centerline

axial velocity to zero. The approach of Loth includes compressibility effects of particle Mach number Mp,

viscosity effects of particle Reynolds number Rep, and rarefied gas effects of particle Knudsen number Knp.

When comparing the time factors calculated in this table with those of Table 4.7, it is clear that the time

factors of Samimy and Lele used to calculate particle tracking of velocity fluctuations are much higher than

with the higher fidelity model of Loth. Therefore, it is believed that the uncertainty in standard deviation

of velocity fluctuations, ∆σ, presented in Table 4.7 is conservative.[54]

The second use of the data in Table 4.8 is in providing an uncertainty estimate for the effect of particle

tracking on measuring the width of the shear layer. In order to make this approach as conservative as possible,

the worst case particle tracking problems to be encountered were fed into the particle drag coefficient model.

The velocity change ∆U used was a step change from the jet exit velocity to a fluid at rest. Additionally, a

gas temperature in the shear layer, T2 of 550 K was used to calculate the lowest possible density ρ2. Then,
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the distance taken for a particle to travel from 90% of the centerline velocity to 10% of the centerline velocity

(which are the measurement points of the shear layer thickness, δ10) was calculated from an integration of the

assumed exponential velocity profile. The result was ∆x10 = 2.778∆Uτp and is listed in the far right column

of Table 4.8. The uncertainty in shear layer thickness produced by particle tracking errors is four orders

of magnitude less than measured shear layer thicknesses and is therefore neglected in further uncertainty

analysis.[92, 227, 323]

In further investigation of Figures 4.4, 4.5, 4.6 and 4.7, the 100 nm particles do show indications of pre-

dicting the shear layer thickness to be larger than the thickness measured by molecular tagging velocimetry.

In all four cases the error in shear layer thickness is 3% or less. This is much larger than the error suggested

by the particle tracking model previously, however note that the particles are not tracking a simple step as

was implemented by the model. The environment which the particles are tracking is chaotic and severe,

especially at the exit of the jet. This tracking only improves as the jet decelerates and spreads out further

downstream.[216, 249, 323]

Summary of Important Findings from the Modeling Approach to Estimate Accuracy in

Turbulence Measurements

Here is a summary of the significant conclusions obtained from the modeling of particle tracking to estimate

uncertainties in turbulent measurements using particle image velocimetry.

• Using the model of Samimy and Lele [323], the effect of particle latency on turbulence measurements

of axial and tangential velocity produced a propagated uncertainty of between 2.3% and 2.6% using

sample sizes of 4000 velocity vectors.

• Using the model of Loth [227], particle tracking was found to have negligible effect on determining

shear layer thickness. Measurement comparisons made in the previous section found errors of between

1% and 3% 1.1 diameters downstream of the anode face. Further downstream it was reasoned that

this measurement error should decrease as particle tracking improves in the growing shear layer.
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4.2 Velocity and Turbulent Kinetic Energy Profiles from

Particle Image Velocimetry

This section contains a comprehensive description of the particle image velocimetry (PIV) data collected.

First, PIV information is used to compare the rarefied perfectly expanded supersonic jet to a supersonic

jet exhausting into quiescent atmospheric air. Next, to show the development of the features of a super-

sonic axisymmetric jet, mean and turbulent velocity jet data is presented as a sequence from near the jet

exit downstream through the entire test region Then, the influence of plasma-on the calculated mean and

turbulent quantities is presented at the furthest downstream location, where the plasma has the strongest

influence. The PIV data collected for three perfectly expanded jets of increasing Mach number are examined

next to better understand the influence of plasma with varying compressibility.

A new nozzle design is introduced next, with the goal of providing a flow field which interacts more

with the plasma. The developing pipe flow of a constant-diameter tube type nozzle is used to increase the

turbulence in the core of the jet and subsequently throughout the jet after the core breaks down. The results

of this jet flow are compared to a jet created from fully-developed pipe flow exhausting into atmospheric

conditions as a baselining technique, to understanding the flow structure before interaction with the plasma.

Then the plasma influence is examined at three increasing pressure ratios to understand the effect plasma has

through compressibility. Supersonic exit conditions are achieved with the constant-diameter pipe through

an aerodynamic throat caused by a separation at the tube entrance.[130]

Next, an off-nominal case is examined to investigate the claim that plasma may influence weak shocks.

A supersonic perfectly expanded jet is run at an overexpanded pressure ratio to provide a weak series of

diamond shocks in the jet core. The influence of the plasma field is then examined through the velocity

fields measured from particle image velocimetry.[76, 194, 193, 229]

Finally, the influence of anode design on mean and turbulent features of a jet exhausting through a

plasma field is examined. The baseline flat anode is compared to an anode with a modified tip. The tip

design was created to improve the strength of the plasma field near the jet exit. The truncated conical

tip with serrated groves provides a non-uniform electrical field which generated small corona discharges to

draw plasma strength towards the jet exit. PIV data are compared for both anodes, using the same jet and

pressure ratio to quantify the effectiveness of the anode.[145, 308]

Figure 4.11 shows the measurement locations in increasing downstream distance from the jet exit, for the

8 and 9 torr plasma fields. The measurement are shown as a sequence of dots, with each dot representing an

individual data point. The dots are organized into four columns and are superimposed on the axial velocity
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Figure 4.11: Measurement Locations Investigated for the 8-9 Torr Series of Nozzles

Figure 4.12: Measurement Locations Investigated for the 5 Torr Series of Nozzles

contours of a jet to highlight the jet structure at those locations. To report data of large enough sample size,

the four adjacent columns of PIV data were combined. Each line consisted of velocity measurements made

from 1,056 or 1,150 image pairs (depending on image size used). By combining four adjacent columns, over

4,000 velocity samples were available to perform statistical analysis on. Figure 4.12 shows the stations for

the 5 torr plasma field cases. Note the additional two measurement stations for this sequence.[50, 156]
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4.2.1 Mean and Turbulent Characteristics of Axisymmetric Jets
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Figure 4.13: Mean Axial Velocity Contours of the Mach 1.4 Axisymmetric Jet

This section will focus on a detailed analysis of the evolution of mean velocity and turbulent velocity

fluctuations of a perfectly expanded supersonic axisymmetric jet. Figure 4.13 is a carpet plot of contours of

mean axial velocity for the Mach 1.4 jet. Three separate PIV collection stations comprise the overlapping

data represented in the figure, covering 12 jet diameters in the axial direction and 2 diameters in the radial

direction. Note that the initial profile of the jet includes a high speed core which is traveling at a constant

speed of 421 m/s. This core decreases in width as the jet begins to spread, and at 7.5 jet diameters

downstream the jet core swallowed by the shear layers on both sides merging together. The jet slows and

widens from that point, reaching near self-similar conditions by 12 diameters downstream.[133, 224, 376]

Table 4.9: Estimation of Jet Exit Conditions for the Mach 1.4, 5 Torr Converging-Diverging
Axisymmetric Jet

Case Po (1) Pe (1) To (1) Me (2) Ue (1) Te (2) D? (1) De (1) ReD (2)
[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]

E 16.5 5.00 296 1.35 404 217 8.9 9.5 6133
(1) Measured Quantity
(2) Estimated From Plenum Temperature and Measured Exit Velocity

The parameters detailed in the beginning of this chapter are reviewed here in Table 4.9. The table lists

the measured pressures which drove the jet (Po and Pe) and the plenum temperature, To. Calculations

performed on the measured pressures and temperature assume isentropic conditions and yield equivalent
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Mach number Mi, jet core velocity Ui and static temperature Ti. Next, using the measured core jet velocity

Ue, the Mach number Me and static temperature Te were calculated assuming the total temperature was

equal to the measured plenum temperature. Finally, using the jet exit diameter as the length scale, the

Reynolds number for the jet was calculated with the measured chamber pressure. Viscosity and density

were calculated from the static temperature Te by Sutherland’s law and the equation of state for an ideal

gas. Following are a series of figures which show the mean and turbulent velocity features of the axisymmetric

jet as a series of lines, progressing from near the jet exit in successive downstream increments.[14, 40, 383]
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Figure 4.14: Downstream Progression of Mean Axial Velocity and Axial Velocity Fluctuations for a Mach
1.36 Axisymmetric Jet Exhausting into Atmospheric Air, Based on Data From Mosedale et. al. [275] (Note:
Measurements Were made 45.8◦ Off the Jet Axis, Meaning the Axial Components are Larger by a Factor of
1.41)

The two panels of Figure 4.14 provide a basis for comparison of measurements of a supersonic axisym-

metric jet made at atmospheric pressure by Mosedale et. al. [274] with the measurements made here. The

jet measured by Mosedale, et. al. was a perfectly expanded Mach 1.36 jet. The measurements were made

by Laser Doppler Velocimetry (LDV). The panel on the left shows mean axial velocities at 3, 5 and 7 jet

diameters downstream, respectively. On the right, the turbulent axial velocity fluctuations σu are presented

at the same locations. Note that the measurements of Mosedale et. al. were made 45.8◦ off the jet axis,

meaning the axial components are larger by a factor of 1.41. Figure 4.14 shows the core of the jet at three jet

diameters with the signature top-hat profile, named because the cross-sectional shape resembles an outline

the garment. As the jet progresses downstream, the mean velocity profiles show the shear layers merging
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and engulfing the core of the jet. The turbulent fluctuations in this developing jet peak at roughly 17% of

the jet centerline velocity. Note in the region where the jet core exists, the turbulent fluctuations are very

low. However, in the shear layer, the axial velocity fluctuations peak. As the jet core is swallowed, the core

turbulence correspondingly begins to rise.[224, 228, 376]

The next set of figures are a from the Mach 1.4 jet created for this research effort. Figure 4.15 on

the following page contains four panels, each of which show one mean or turbulent quantitiy of interest

in the jet analysis. Each panel shows the progression of that particular parameter from 2.3 to 11.3 jet

diameters from the anode face. In panel (a) are lines of mean axial velocity. Note that the jet exit velocity is

significantly higher than when compared to the measurements of Mosedale et. al.[275] The LDV and PDV

results presented there were taken at an angle 45.8◦ off of the jet axis. The mean flow in the axial direction

should be 1.41 times higher which agrees well with the isentropic predictions for a Mach 1.36 jet and also

with the measurements taken here. The mean axial velocity profiles of Figure 4.15 follow the same trends

as found in the work of Mosedale et. al., with the jet core disappearing in converging shear layers. Note

that when comparing the axial fluctuating values in Figure 4.14 (b), (d), and (f) with those of Figure 4.15

(c), care should be taken with the off-axis results of Mosedale et. al. The measurements show a fluctuating

peak of roughly 17% in an axis inclined halfway between axial and tangential flow. Blindly scaling that

value by 1.41 yields 24%, which is near the measurements in Figure 4.15. However, all that can be truly

said about the fluctuating velocities of Figure 4.14 are that they are anticipated to peak higher than 17%

and that the trends shown there correspond well to the trends found in this current work. Hussein, Capp

and George [192] used hot-wire anemometry and LDV to measure mean and turbulent fluctuations in the

axial direction of a subsonic jet and found axial turbulence intensities peaked at 28%.[14]
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Figure 4.15: Downstream Progression of Mean and Turbulent Velocities for a Mach 1.4 Axisymmetric Jet
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Figure 4.16: Downstream Progression of Second Moment Turbulent Fluctuations for a Mach 1.4 Axisym-
metric Jet
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Figure 4.17: Downstream Progression of Third Moment Turbulent Fluctuations for a Mach 1.4 Axisymmetric
Jet
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Figure 4.18: Downstream Progression of Skewness and Kurtosis of Axial Velocity Fluctuations for a Mach
1.4 Axisymmetric Jet

Panel (b) of Figure 4.15 are lines of tangential velocity at successive downstream locations for the same

jet. Note that at the first downstream location, a 1% velocity to the left (toward negative radial positions)

indicates a small angular misalignment between the camera and jet centerline. The spreading of the jet

through the shear layer is visible in the tangential velocity increasing in magnitude away from the centerline

initially and then decreasing as the extent of the shear layer is reached in each direction. Panels (c) and

(d) show the standard deviation (or root mean square - RMS) of axial and tangential velocity, respectively,

scaled by the jet centerline velocity Uo. The trends in both fluctuating measurements are the about same,

except the axial fluctuations are twice the magnitude of the tangential component. Nearest the jet exit, the

fluctuations appear as sharp peaks in the shear layer where the core of the jet abruptly interacts with the

quiescent gas in the test section. As the jet core disappears further downstream, the turbulent fluctuations

rise in the center of the jet and broaden with the growth of the shear layer. Finally, at 11.3 diameters

downstream, the jet is nearing self-similar conditions where the mean and fluctuating profiles would take

on a Gaussian shape. The values measured here match well with the RMS profiles found by Mosedale et.

al. [275], with the caution on the magnitudes of off-axis measurements of turbulence intensities in their

work.[224, 274, 352, 376]

The influence of the jet on second moment statistics of the velocity fluctuations is examined in Figure 4.16

on page 115. Panel (a) is the progression of the Reynolds shear stress term −uv/U2
o . This cross coupled term
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shows the characteristic antisymmetry about the centerline, created by the tangential spreading of the jet.

At the jet exit the Reynolds shear stress term is nonexistent, but grows as downstream location increases.

Panels (b) and (c) show two common variations of the Reynolds shear stress term. First, the cross-coupled

velocity fluctuation term is scaled by the root mean square velocity fluctuations which is known as the

correlation coefficient of the Reynolds shear stress term. When this term is unity, it signifies that the axial

and tangential velocity fluctuations are correlated while a value of zero indicates uncorrelated fluctuations.

Negative values imply anti-correlation. In the structural parameter a1, the fluctuating term is now scaled

by the summation of the Reynolds normal stress terms. Since in both cases the denominator is always

positive, the resulting curves follow the same trends as seen in panel (a) with higher magnitudes since they

are divided by the RMS fluctuations which are of smaller magnitude than the centerline axial velocity. The

fluctuating velocity profiles show an increasing trend toward correlation (and anti-correlation) for increasing

distance downstream which matches with the analysis of Morris. [273] It is important to note that the first

downstream location has been changed from 2.3 diameters to 5.0 diameters. The RMS fluctuations are so

low at the jet exit, that division by such a small number results in wild variations that provide only confusion

to the graph, therefore the line was moved further downstream to improve clarity.[107, 224, 289]

Panel (d) of Figure 4.16 is of turbulent kinetic energy (TKE) k = (σ2
u + σ2

v)/2, scaled by the kinetic

energy of the jet centerline U2
o /2. The TKE is a summation of the Reynolds normal stresses and represents

the relative energy in the fluctuations. At 2.3 diameters downstream the profile is similar to the RMS

fluctuations, showing spikes in the thin shear layer. The centerline TKE increases as the quiet core of the

jet is replaced by more turbulent shear layers. At 11.3 diameters, the profile is beginning to take on the

Gaussian shape, an indicator of self-preserving flow structure which is then independent of axial location.

Turbulent kinetic energy will become a useful analysis tool as this section progresses.[103, 107, 224, 289]

The third moments of velocity fluctuations are examined in Figure 4.17 on page 116. Panels (a) and (b)

show the normal components u3/U3
o and v3/U3

o , respectively. Note in this figure, the initial line is removed

completely to improve clarity. The jet core is still visible in panel (a) at a location of 7 diameters, but quickly

vanishes at 9 and 11 diameters. Panel (b) shows the tangential component of third moment fluctuations

with similar trends as were observed in σv earlier, however now with a smaller magnitude. The cross-coupled

third moment fluctuations of panels (c) and (d) show trends in growth as the jet progresses downstream,

with some interesting features. The u2v/U3
o term is marked by an anti-symmetry which crosses zero at

the jet centerline and then reverses abruptly in the shear layer, while the uv2/U3
o term shows symmetry in

the core with a polarity reversal in the shear as well. Both of these plots highlight the importance of the

distribution of tangential velocity fluctuations. In the first term, the switch in sign of tangential velocity
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at the centerline is passed through the correlation factor and results in the anti-symmetry while the second

term eliminates that factor through the square of tangential velocity.[107, 224, 289]

Finally, Figure 4.18 on page 117 is a plot of the downstream progression of skewness and kurtosis of

axial velocity fluctuations. Skewness, u3/σ3
u, is a measure of symmetry in the probability density function

describing the distribution of axial velocity fluctuations. A skewness of zero represents a symmetric dis-

tribution of velocity fluctuations. Positive skewness indicates that the right tail is longer, while negative

skewness indicates the opposite trend. A review article by List reported for self-similar turbulent jets that

probability density functions of axial velocity fluctuations tended toward positive skewness. As this jet

under investigation here is still developing, panel (a) shows some interesting features. First, at 7 diameters

downstream, the core of the jet is still visible near the centerline. Further outboard, the deceleration of the

shear layer is present in the trend toward negative tailed distributions marked by the two negative lobes.

The immediate reversal on the outside of the shear layer appears to be a function of compressibility as the

jet becomes subsonic at about the point of reversal. At 9 diameters downstream, the core of the jet is gone,

yet the reversal remains where the jet transitions from supersonic speeds to subsonic speeds. Finally, at

11 diameters, the jet is completely subsonic and the self-similar profile described by List [224] begins to

develop.[107, 133, 273, 289]

Panel (b) of Figure 4.18 shows the kurtosis, u4/σ4
u ,of the axial velocity fluctuations. Kurtosis is a measure

of the peakedness of the probability density function. A Gaussian distribution has kurtosis of 3, indicated by

the red line in the figure. Values higher than three indicate distributions which are flatter than a Gaussian,

while smaller values indicate sharper velocity distributions. Davies [107] found that for a developing jet,

kurtosis is Gaussian in the core and peaks to 6 in the transition between the core and the encroaching shear

layers, falling to 2.5 in the mixing region before reaching an asymptote as the velocity approaches zero at

the edge of the outer shear layer. The results measured here agree well with those findings. [273]

In summary, the measurements taken for the perfectly expanded jet exhausting into a 5 torr chamber

match very well to the isentropic predictions at the exit and compare well to the atmospheric jet of Mosedale

et. al.[275] in both mean and RMS fluctuations of axial velocity. This comparison is further indication of

adequate particle tracking in the rarefied flow after the uncertainty estimates provided by modeling. In the

next section, the effect of plasma-on this jet will be examined.

4.2.2 Mach 1.4, 5 Torr Converging-Diverging Axisymmetric Jet

Figure 4.19 begins the investigation into the influence of a plasma field on mean and turbulent jet features.

Note that to eliminate the effect of the tolerance on pressure matching between tests, the plasma-off/plasma-
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Figure 4.19: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Mach 1.4 Axisymmetric Jet at 5 Torr

on runs were conducted in one block and were interleaved. The mean centerline axial jet velocity Uo is shown

in panel (a) and is a composition of three separate PIV runs, as was shown in the contours of Figure 4.13.

Note that variations in pressure matching and minor nozzle imperfections combine to form weak waves

which show up as oscillations in the core flow of the jet. As the jet transitions through core breakdown,

the decay in velocity picks up the common linear slope. The influence of plasma is seen here, where the

green line indicating plasma-off overlays the red plasma-on line in the core, but the plasma-on centerline

velocity becomes visible with a slower decay rate. This is initially postulated as a thermal effect based on

the heating of the quiescent region which allows the core of the jet to break down more slowly in the lower

density chamber when the plasma is on, versus the plasma-off case.[193, 251, 255, 308]

In panel (b), the shear layer thickness δ10, was measured as the difference in radial position of the axial

velocity between 10% and 90% of the maximum velocity. Maximum velocity was used to avoid the possibility

of minor shocks in the jet which could lower the centerline velocity below the core velocity at a particular

location. The maximum comprised of an average of the 4 highest values of axial velocity at this station,

to minimize the potential of a spurious data point. Again the jet shows the transition between developing

jet and self-similar flow at a location between 6 and 7 jet diameters, picking up a linear growth rate. The

growth rate is measured only in this linear region and presented as a percentage in panel (b). The shear

layer growth rate is increased for the plasma-on by 2.7% over the plasma-off case. The increase in growth
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rate also seems to point to the heating of the shear layer by the plasma field with the subsequent increase

in viscosity and speed of sound.[216, 251, 376]

In the first look at cross-sections of the jet, plots were presented as a series of lines, beginning at the

jet exit and progressing downstream. In the pages which follow, only the furthest downstream case will be

displayed. As can be seen in in Figure 4.19 (a) the mean centerline axial velocity of the jet consists initially

of a core region which breaks down at about 7 diameters from the anode face. The plasma does not begin

to influence the flow until after core break down. The relative weakness of the plasma field near the anode,

coupled with the strong shear created at the core interface results in negligible plasma influence on mean

and turbulent velocity fluctuations at upstream locations. Therefore for clarity, only the profiles furthest

downstream will be presented to determine the effects of plasma-on the flow measurements.[216, 251, 376]

Figure 4.20 on the following page contains plots of mean axial and tangential velocity, as well as their

RMS fluctuations 11.3 jet diameters downstream of the anode face for the perfectly expanded Mach 1.4 jet

into a chamber at a pressure of 5 torr. Panel (a) indicates an increase in centerline axial velocity of 5.1%

for the plasma-on case over the plasma-off case. This increase in consistent with the decrease in centerline

decay for plasma-on discussed in Figure 4.19. In the tangential velocity, shown in panel (b) the plasma-on

case increases in magnitude slightly over the plasma-off case at the center of the shear layer and crosses to

lower magnitudes, which indicate a slightly stronger shear when the plasma is on. The turbulent velocity

fluctuations in the axial and tangential directions are shown in panels (c) and (d), respectively. The plasma-

on trend for both panels is similar - fluctuations increase in the shear layer (3.1% for the axial case) and

decrease on the centerline. These trends support the theory of delayed core breakdown caused by shear layer

heating from the plasma.[251, 273]

Next, the second moment fluctuations of turbulence are examined in Figure 4.21 on page 123. Panel

(a) shows the Reynolds shear stress term, scaled by the centerline velocity. While there is a difference

visible in the figure, it is masked somewhat by the fact that the scaling parameter Uo had a corresponding

increase. Better scalings of Reynolds shear stress appear in the correlation coefficient and the structural

parameter, shown in panels (b) and (c) respectively. Given that σuσv and σ2
u + σ2

v are positive semi-

definite, the trend both of these parameters show is almost identical, differing only in the magnitude on

the ordinate. The increase in RMS turbulence in the shear layer region with plasma-on decreases both the

correlation coefficient and the structural parameter. The final panel of Figure 4.21 is of turbulent kinetic

energy k = (σ2
u + σ2

v), scaled by U2
o /2. This term takes both variances of velocity fluctuations and combine

them to show an increase of 3.1% of TKE in the shear layer and a decrease of 5.1% along the centerline for

the plasma-on case, when compared to the plasma-off condition.[103, 109, 273]
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Figure 4.20: Plasma Effects on Mean and Turbulent Axial Velocities for a Mach 1.4 Axisymmetric Jet at 5
Torr
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Figure 4.21: Plasma Effects on Second Moment Turbulent Fluctuations for a Mach 1.4 Axisymmetric Jet at
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Figure 4.22: Plasma Effects on Third Moment Turbulent Fluctuations for a Mach 1.4 Axisymmetric Jet at
5 Torr
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Figure 4.23: Plasma Effects on Skewness and Kurtosis of Axial Velocity Fluctuations for a Mach 1.4 Ax-
isymmetric Jet at 5 Torr

Continuing onto the third-moment terms shown in Figure 4.22, panels (a) through (d) show the four

combinations of third order fluctuations. Panel (a) shows the axial normal term u3/U3
o . The plasma-on

condition decreases slightly along the centerline when compared to the plasma off case. The tangential

normal component in panel (b) v3/U3
o is an order of magnitude smaller and shows increased fluctuations

for plasma-on, but generally tracking the same as for plasma-off. The cross-coupled terms u2v/U3
o and

uv2/U3
o in panels (c) and (d) respectively, show an increased magnitude in the shear layer, while uv2/U3

o

shows a decrease (larger negative value) along the centerline as well. These trends agree with the previous

postulation that warmer air in the shear layer, caused by plasma heating, allow the jet core to penetrate

further downstream. Note in all cases, while there are discernable differences, care should be taken in

interpreting the results as the ordinate axes each reveal that these values are only 1% of the centerline axial

velocity cubed, or less. The effects of propagated uncertainty are present here as well as witnessed by the

wild fluctuations entering into the data as a result of manipulation by small numbers.[107, 224, 352]

Looking at skewness and kurtosis in Figure 4.23, both show that the probability density functions which

describe the distribution of velocity fluctuations remain near their expected values of 0 and 2.5, respectively,

in the core region for both plasma-on and plasma-off. In contrast, the outer portion shear layer performance

shows a change for plasma-on versus plasma-off. In skewness (panel (a)), the distribution of axial fluctuations

becomes more Gaussian as indicated by the decrease for plasma-on. Increased viscosity caused by shear layer
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heating could be responsible for this shift toward symmetry. Panel (d) shows that kurtosis begins to increase

in the outer shear layer when the plasma is turned on. This is further evidence supporting the jet penetration

supposition - as the region at kurtosis of 2.5 decreases 20% when the plasma is engaged. A narrower jet

region indicates less core breakdown and therefore further penetration of the jet into the plasma heated

flow.[107, 273, 289]

4.2.3 The Effect of Plasma for Increasing Pressure Ratios in Perfectly

Expanded Axisymmetric Jets

Figure 4.24: A Path Showing The Progression Through the Experiment Space to Investigate Compressibility
on Perfectly Expanded Axisymmetric Jets

This section looks at three perfectly expanded jets which provide increasing Mach numbers to look into

the effect of plasma influence of mean and turbulent velocities with varying compressibility. Figure 4.24

shows the path taken through the experiment space of chamber pressure and equivalent Mach number. Note

the Mach 2.0 case occurred at a lower chamber pressure due to pressure matching considerations. The

cases are summarized in Table 4.10 by case identifier and followed by the pertinent measured and calculated

parameters described in detail at the beginning of this chapter. The first case to be examined with be the

Mach 0.7 jet. Then in increasing Mach number, the Mach 1.1 and Mach 2.0 cases will be examined.
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Table 4.10: Estimation of Jet Exit Conditions for the 8-9 Torr Converging-
Diverging Axisymmetric Jets

Case Po Pe To Me Ue Te D? De ReD

[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]
A 12.7 9.15 289 0.69 229 264 20.3 20.8 4470
B 20.5 9.15 293 1.13 350 233 15.2 15.7 8501
C 71.0 8.00 292 2.03 523 160 8.0 11.3 22430
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Mach 0.6, 9 Torr Converging-Diverging Axisymmetric Jet
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Figure 4.25: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Mach 0.7 Axisymmetric Jet at 9 Torr

r/D [ND]

U
[m

/s
]

-2 -1 0 1 2
0

100

200

300

400

Plasma On

Plasma Off

Plasma On

Plasma Off

x/D = 3.2

(a) Mean Axial Velocity, U

r/D [ND]

(
)/

U
[N

D
]

-2 -1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Plasma On

Plasma Off

0
σ

+
u

σ
2

v
2

2

x/D= 3.2

(b) Turbulent Kinetic Energy, (σ2
u + σ2

v)/U2
o

Figure 4.26: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Mach 0.7 Axisym-
metric Jet at 9 Torr, 3.2 Diameters from the Anode Face
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The investigation reported here looks at the changes along the centerline of the jet, and proceeds to look

in greater detail at transverse slice across the jet 3.2 jet diameters downstream of the anode - or roughly 10

mm in front of the cathode. To investigate the effect of plasma-on this particular case, first the centerline

axial velocity (Uo) and shear layer thickness (δ10) are examined in the gap between electrodes in Figure 4.25.

The data to form these lines were a composite of two separate PIV runs. Note the vertical mismatch

in centerline velocity in panel (a). Even with the tightest monitoring of plenum pressure and chamber

pressure, the jet conditions for this case were very difficult to repeat exactly. The difference in centerline

velocity between these two runs is 5 m/s. The tolerance in chamber pressure allowed for a variation of ±6.4

m/s. Tighter monitoring was not possible given the dependant nature of chamber pressure and plenum

pressure for subsonic nozzle flow, therefore the runs were combined with the caveat that there was a 2%

variation in core velocity between each of the runs forming the composite.

There is no measurable difference between the centerline axial velocity or shear layer thickness for the

entire region examinable in the electrode gap. The shear layer thickness δ10, was measured as the difference

in radial position of the axial velocity between 10% and 90% of the maximum velocity. Maximum velocity

was used to avoid the possibility of minor shocks in the jet which could lower the centerline velocity below

the core velocity at that location. The maximum comprised of an average of the 4 highest values of axial

velocity at this station, to minimize the potential of a spurious data point.[103, 216]

Next, Figure 4.26 examines the mean axial velocity and turbulent kinetic energy at the last downstream

station before the cathode. No appreciable difference in mean axial velocity is present - the plasma-off line

is drawn last in the figure to highlight changes in the flow due to the influence of plasma. If there is no

change between plasma-off and plasma-on conditions, then the green line lies directly on top of the red line

and thus no red is observed. In panel (b) of Figure 4.26 a small increase (5.6%) in peak TKE is observed in

the shear layer.
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Mach 1.1, 9 Torr Converging-Diverging Axisymmetric Jet
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Figure 4.27: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Mach 1.1 Axisymmetric Jet at 9 Torr
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Figure 4.28: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Mach 1.1 Axisym-
metric Jet at 9 Torr, 4.5 Diameters from the Anode Face
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This jet transitions into supersonic core velocities in comparison to the previous jet. Figure 4.27 (a)

shows mean axial velocity along the centerline for this Mach 1.1 jet. Note that the measurements were made

by PIV at two separate locations in order to cover the electrode gap region with adequate resolution. The

two runs were combined here to form a composite curve. One of the effects of the composite curve was

highlighting the variation in plenum plenum pressure from run to run. In this case, the tolerance in plenum

pressure results in a variation in core speed of ±4.6 m/s.

Any changes visible between the plasma-off and plasma-on cases were below the measurement uncertainty,

which in this case was 1.4% because this line was formed from averaging 1000 samples. Only cross-sectional

comparisons were a compilation of four rows of data to create the larger 4000 sample sets. Panel (b) of

Figure 4.27 also shows no significant change in shear layer thickness or shear layer growth rate. Similarly

in Figure 4.28, changes in mean axial velocity and turbulent kinetic energy are well below measurement

uncertainties for these parameters. The increase in jet exit velocity appears to have eliminated the small

change in TKE which was noticed at Mach 0.7 (case A).
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Mach 2.0, 8 Torr Converging-Diverging Axisymmetric Jet
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Figure 4.29: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Mach 2.0 Axisymmetric Jet at 8 Torr
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Figure 4.30: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Mach 2.0 Axisym-
metric Jet at 8 Torr, 6.2 Diameters from the Anode Face
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A change in centerline axial velocity is visible in Figure 4.29 (a), and is increasing as the flow progresses

downstream. The plasma-on case has higher centerline velocity than the plasma-off case. This is not

attributed to an error in setting plenum or chamber pressures - as each PIV run comprised of interleaved

cases - alternating between plasma-off and plasma-on. The chamber and plenum pressures were set at the

beginning of the test block and were unaltered between the interleaved sequence. There is a slight increase

in shear layer thickness in Figure 4.29 (b) with a difference of 0.2 mm at 4 jet diameters, which grows to 0.6

mm at 6 jet diameters from the anode face. The change in growth rate however is less than 1%.

Further evidence of change is visible in the mean axial velocity is present in Figure 4.30 (a). At this

station, the plasma-on case is 5.1 m/s higher than plasma-off. Due to the high core velocity, this represents a

1% change. Figure 4.30 (b), interestingly shows a 14% change in turbulent kinetic energy along the centerline

with the plasma-on case dropping below the baseline plasma-off case. Note that the percent change in TKE

can be somewhat misleading, given that the baseline TKE along the centerline is still rather low for this

developing jet. No measurable change is present in TKE in the shear layer however.

Summary of Important Findings in Perfectly Expanded Jet Flows

Here is a summary of the significant conclusions obtained in the comparison of mean and turbulent fluctu-

ations measured by particle image velocimetry of perfectly expanded jets with plasma-on and plasma-off.

• At a chamber pressure of 5 torr, the Mach 1.4 jet was most influenced by the plasma field. Measure-

ments 11.3 diameters downstream of the anode face revealed a 5.1% change in mean axial velocity

at the centerline. A coincidental decrease in TKE of 5.1% also occurred on the jet centerline, with a

3.1% increase in TKE in the shear layer. These measurements support a supposition that the primary

influence this plasma field has over the coaxial jet is through heating the shear layer, thus decreasing

the density and increasing the speed of sound locally. The jet core remains relatively undisturbed by

the plasma field and therefore results in an delay in core breakdown until further downstream.

• The Mach 0.7 jet at a chamber pressure of 9 torr showed no change in mean axial velocity between

plasma-on and plasma-off. Turbulent kinetic energy however showed a 5.6% increase in the shear layer.

• The Mach 1.1 jet exhausting into a chamber pressure of 9 torr showed no change in mean axial velocity

or fluctuating velocity measurements when comparing the plasma-on and plasma-off cases.

• The Mach 2.0 jet at 8 torr however, showed minor changes. The TKE along the centerline decreased by

14% noting that k along the centerline was small and therefore changes were magnified in percentage
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analysis. The centerline mean axial flow also saw a change, the plasma-on case was 1% larger than the

plasma-off case.

Two factors contribute to the changes discovered so far. First, the largest driver in change appears to

be chamber pressure when considering the effect of plasma-on mean and turbulent velocities. The optimal

distance between electrodes increases for decreasing chamber pressure. This increase in distance provides

longer plasma volumes along the shear layer of the jet which in turn produces longer jet resident times in

the plasma field and therefore increases the potential for plasma to influence the flow. The second factor

appears to be related to jet diameter. Jet diameter influences the location where the core breakdown of

the jet occurs. Core breakdown typically begins before 8 jet diameters downstream and self similar flow

conditions are typically reported for jets beyond 15 diameters. Therefore in a fixed gap space, the jet with

smaller exit diameter will experience core breakdown first - for a given pressure ratio. The reduction of

chamber pressure from 8-9 torr to 5 torr combines those effects. The lower chamber pressure has an optimal

electrode spacing increase of 50%. The chamber pressure is set by the mass flow of gas passing through

the vacuum pump. At 5 torr the mass flow rate through the pump is reduced 40% from 8 torr - requiring

less mass flow to pass through the nozzle. The requirement for lower mass flow through the nozzle then

drives a smaller throat diameter which then allows the jet to reach near self-similar conditions. The almost

self-similar is marked by ever increasing turbulent fluctuations in the jet core and shear layer. Therefore it

is possible to conclude from these experiments that the plasma field shows the most influence on flows which

have higher concentrations of turbulence.[308, 376]

4.2.4 Mean and Turbulent Characteristics of Constant-Diameter

Axisymmetric Jets

The goal of the next sequence of experiments look to capitalize on the lessons learned in perfectly matched

jets. The desire was to provide a flow which was more easily influenced by the plasma field. Therefore, the

next sequence of experiments was accomplished at 5 torr to use increased gap spacing and smaller jet exit

diameter. To accomplish this, a nozzle was formed out of a constant-diameter tube, 9.5 mm in diameter and

12.7 cm long. The flow speed could be adjusted by variation of the plenum pressure to include supersonic

speeds - which were achieved through choking provided an aerodynamic throat formed at the tube entrance.

The tube created developing pipe flow at its exit into the test chamber, which had further desirable properties

of increased turbulence in the jet core.[130, 133]

This section will begin with a comparison to the results of an experiment by Ferdman, Otugen and

Kim [133] which shows mean and turbulent fluctuations of axial velocity for a fully developed pipe flow from
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a straight tube exiting into atmospheric air. Next, the equivalent Mach 1.4 constant-diameter jet results

will be compared to the perfectly expanded Mach 1.4 jet. Finally, the section will examine the effect of

plasma-on the mean and turbulent kinetic energy 11.4 diameters downstream of the anode face for three

equivalent Mach numbers to observe the influence of compressibility.

Figure 4.31 on the next page are the results of Ferdman, Otugen and Kim.[133] The baseline jet shown

here was a long straight pipe of constant diameter. The Reynolds number based on a mass flux exit velocity

Ub was 24,000. Although the jet of Ferdman, Otugen and Kim was subsonic and higher Reynolds number

than the jet used in this research, the trends found there are expected to be valid for comparison with the

higher Mach numbers in this effort. Panel (a) shows the progression of axial velocity at 1, 3, 6 and 9 jet

diameters downstream from the jet exit, scaled by Ub so that near the exit the centerline velocities exceed

unity. In contrast to the perfectly expanded jets shown in the previous section, the core breakdown here has

occurred before an x/D of 6. The top-hat profile present in jets formed from converging-diverging nozzles

is absent here as well since the flow is fully-developed pipe flow at its exit. The turbulent fluctuations in

panels (b) and (c) show peaks in the shear layer near the jet exit which merge and broaden as they progress

downstream. Note here that near the jet exit, the turbulence intensities are not approaching zero, but are

rather decreasing smoothly to the centerline and approach 5% of the bulk velocity. The Reynolds shear

stress term in panel (c) shows lobes in the shear layer as seen in perfectly expanded near-field nozzle flows.

However, the peak magnitude is half of that found in conventional nozzles and the peaks broaden but do

not increase as they progress downstream.[133, 399]
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(a) Mean Axial Velocity, U/Ub

(b) Axial Velocity Fluctuations, σu/Ub

(c) Tangential Velocity Fluctuations, σv/Ub

(d) Reynolds Shear Stress Term, −uv/U2
b

Figure 4.31: Downstream Progression of Mean Axial Velocity and Velocity Fluctuations for an Incompressible
Axisymmetric Straight Pipe at Atmospheric Pressure Where Ub is the Exit Bulk Velocity Based on Mass
Flux, From Ferdman, Otugen and Kim (with Permission) [133]
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Figure 4.32: Mean Axial Velocity Contours of the Equivalent Mach 1.4 Axisymmetric Constant-Diameter
Jet

Figure 4.32 is a patchwork plot of axial velocity contours from three separate PIV measurement stations

of the equivalent Mach 1.4 jet created by developing flow from a constant diameter pipe 9.5 mm in diameter

and 12.7 cm long. In comparison with Figure 4.13, the jet looks similar in shape and spreading but with a

lower core velocity. Figure 4.33 shows mean and turbulent velocity fluctuations at a series of downstream

locations. The lines show the progression of the jet from near the exit (x/D = 2.4) to near the cathode face

(x/D = 11.4). First the mean axial velocity is presented in panel (a) to compare with Figure 4.31 (a). In

the case measured here, the pipe flow is not fully developed as the pipe is only 13 diameters long. Other

experiments indicate that pipe flow is considered fully developed after 50 diameters of travel. Therefore the

developing nature of the pipe flow at the jet exit shows up as a rounded top-hat profile at 2.4 diameters.

The core of the jet breaks down soon after that however, and the remaining profiles resemble the findings of

Ferdman, Otugen and Kim.[133, 328, 399]

Panel (b) of Figure 4.33 shows axial velocity fluctuations to compare with the Ferdman, Otugen and Kim

results of Figure 4.31 (b). The key differences focus on the first profile, 2.4 diameters from the anode face

where the turbulence intensity forms sharper peaks and is lower than the fully developed counterpart. Note

that although the pipe flow of this experiment has not matured in turbulence prior to the exit, it quickly

approaches the more rounded characteristics of the fully developed structure.

Note that Figure 4.33 (b) shows a trend of increasing RMS for increasing downstream location, while

Figure 4.31 (b) shows no such increase. The increase in RMS fluctuations is explained by the differences in
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scaling parameters. For Ferdman, Otugen and Kim, the scaling velocity Ub was a constant factor based on

mass flux and also subsonic. In this research the scaling velocity is the centerline velocity which decreases

as the jet progresses further downstream, thus causing the relatively constant peak magnitudes to increase

as flow progresses downstream. Uo was chosen as a scaling velocity for consistency in comparison with

conventional matched nozzle jets. Panel (c) is the progression of tangential velocity fluctuations. The results

found in this effort are much smoother than the results of Ferdman, Otugen and Kim and are believed also

to be based on the developing structure found here versus the fully-developed structure of Ferdman, Otugen

and Kim.[133, 399]

The final panel of Figure 4.33 is the Reynolds shear stress term scaled by centerline velocity. The increase

in magnitude as flow progresses downstream is again explained by the choice in scaling factor. Note that

immediately downstream of the jet exit, the line at x/D of 2.4 is unresponsive. This is believed to be

another function of developing flow, vice the fully developed counterpart of Ferdman, Otugen and Kim.

When compared to Figure 4.16, the pipe flow case appears more rounded at 7 diameters downstream, but

begins to resemble the conventional jet only with slightly higher magnitudes.[133, 399]

The next section will make some direct comparisons between the conventional Mach 1.4 jet and the

equivalent Mach 1.4 jet borne out of developing pipe flow. After that comparison the effect of plasma on

this jet will be examined in detail.
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Figure 4.33: Plasma Effects on Mean and Turbulent Axial Velocities for a Mach 1.4 Axisymmetric Jet at 5
Torr
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Mach 1.4, 5 Torr Converging-Diverging and Constant-Diameter Axisymmetric Jets
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Figure 4.34: Comparison of Centerline jet Velocity Between a Mach 1.4 Axisymmetric Jet and a Jet Created
by Developing Flow Exiting from a Constant-Diameter Tube Driven at a Mach 1.4 Isentropic Pressure Ratio

Figure 4.34 shows the centerline velocity between two jets with identical exit diameters, driven by identical

pressure ratios as indicated in Table 4.11. The conventional jet, indicated by the black line reaches near

isentropic exit conditions. The jet formed by a constant-diameter tube reaches 95.8% of the isentropic

conditions based on pressure ratio and indicated by the blue line in the figure. The difference is accounted

for by pressure losses associated with developing pipe flow. Table 4.11 shows the measured pressures and

temperatures of the plenum (Po, To) and the plenum (Pe). Then a Mach number and static temperature are

calculated based on the measured exit velocity and assuming that the total temperature in the plenum is

unchanged at the jet exit. The throat diameter D?, is shown in order to distinguish between the constant-

diameter pipe and the converging-diverging nozzle.

Reynolds number is calculated using the length scale of exit diameter, measured exit velocity, and density

and viscosity based on the estimated for exit temperature using the ideal gas law and Sutherland’s law,

respectively.[14, 328, 383]

Figure 4.35 compares the conventional nozzle to the constant-diameter nozzle in both mean axial velocity

and turbulent kinetic energy 2.3 diameters from the anode face for the plasma-off baseline cases. The

core velocity decreases 4.2% in panel (a). In panel (b), the centerline turbulent kinetic energy increases

140



Table 4.11: Estimation of Jet Exit Conditions for the Mach 1.4, 5 Torr Converging-Diverging
and Constant-Diameter Axisymmetric Jet

Case Po (1) Pe (1) To (1) Me (2) Ue (1) Te (2) D? (1) De (1) ReD (2)
[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]

E 16.5 5.00 296 1.35 404 217 8.9 9.5 6133
G 16.5 5.00 295 1.27 387 222 9.5 9.5 5605

(1) Measured Quantity
(2) Estimated From Plenum Temperature and Measured Exit Velocity
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Figure 4.35: Comparison of Mean Axial Velocity and Turbulent Kinetic Energy between a Mach 1.4 Ax-
isymmetric Jet and Flow Created from a Tube Driven at a Mach 1.4 Pressure Ratio at 5 Torr, Near the Jet
Exit (x/D = 2.3)

significantly (533%) for the constant-diameter nozzle over the conventional nozzle. It can be argued, that

3% of the energy lost in decreasing core velocity is transferred into increased turbulent kinetic energy in

the core of the jet. The decrease in TKE in the shear layer is 42%. The increase TKE in the jet core was

one of the reasons behind choosing this case to test in the plasma field. Additionally, nozzle manufacturing

was relatively simple, when compared to the converging-diverging nozzles and all three pressure ratios were

tested in this sequence using the same nozzle. Pressure ratios were varied by using a ball valve upstream

of the plenum choke to provide additional regulation, while still allowing for adequate seeding for PIV

measurements.[103, 133]

At 11.3 jet diameters, Figure 4.36 shows the remarkable differences between the jet features. The jet

formed by developing pipe flow is 10.8% lower in centerline velocity than the conventional nozzle in panel
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Figure 4.36: Comparison of Mean Axial Velocity and Turbulent Kinetic Energy between a Mach 1.4 Ax-
isymmetric Jet and Flow Created from a Tube Driven at a Mach 1.4 Pressure Ratio at 5 Torr, Much Further
Downstream (x/D = 11.3)

(a). While in panel (b), TKE is 26.6% higher on the centerline and 14.9% higher in the shear layer for the

pipe flow nozzle when compared to the converging-diverging nozzle with identical exit diameters. The next

three cases investigate the influence of increasing pressure ratio on the plasma field by examining mean and

turbulent kinetic energy measured by particle image velocimetry.
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4.2.5 The Effect of Plasma for Increasing Pressure Ratios in Jets Formed out

of Developing Pipe Flows

Figure 4.37: A Path Showing The Progression Through the Experiment Space to Investigate Compressibility
on Developing Pipe Flow From Constant-Diameter Nozzles

This section looks at three constant-diameter nozzle flow fields which provide increasing equivalent Mach

numbers to look into the effect of plasma influence of mean and turbulent velocities with varying compress-

ibility. Figure 4.37 shows the path taken through the experiment space of chamber pressure and equivalent

Mach number. The cases are summarized in Table 4.12 by case identifier and followed by the pertinent

measured and calculated parameters described in detail at the beginning of this chapter. The first case to be

examined is the equivalent Mach 0.9 jet. Then in increasing equivalent Mach number, the equivalent Mach

1.4 and equivalent Mach 1.9 cases will be examined.

Table 4.12: Estimation of Jet Exit Conditions for the 8-9 Torr Converging-Diverging Ax-
isymmetric Jets

Case Po (1) Pe (1) To (1) Me (2) Ue (1) Te (2) D? (1) De (1) ReD (2)
[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]

F’ 8.2 5.00 293 0.75 247 263 9.5 9.5 2637
G’ 16.5 5.00 295 1.27 387 222 9.5 9.5 5605
H’ 34.0 5.00 294 1.63 460 192 9.5 9.5 8733

(1) Measured Quantity
(2) Estimated From Plenum Temperature and Measured Exit Velocity
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Equivalent Mach 0.9, 5 Torr Constant-Diameter Axisymmetric Jet
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Figure 4.38: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Flow Created from a Tube Driven at a Mach 0.9 Pressure Ratio at 5 Torr
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Figure 4.39: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Flow Created from
a Tube Driven at a Mach 0.9 Pressure Ratio at 5 Torr
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In continuing variations in pressure ratio and nozzle type, this begins the sequence of plasma influence

on constant-diameter tube measurements. Figure 4.38 shows the centerline axial velocity and shear layer

thickness along the electrode gap in panels (a) and (b), respectively. It is surprising the change in centerline

velocity visible in panel (a) given the relatively weak visible light emission seen in Section 4.5. Shear layer

growth rate changes are considered insignificant here given the small overall growth rate reported and the

still developing nature of the jet even at 11.4 jet diameters.

Figure 4.39 reports an 8% increase in axial velocity for the plasma-on case over the baseline case at the

centerline of the jet, 11.4 jet diameters downstream of the anode face. Panel (b) shows an astounding 36%

decrease in turbulent kinetic energy along the centerline with a 29% decrease in TKE in the shear layer.

From the axial velocity and TKE plots, it appears as if the plasma-on case is taken at a location much closer

to the anode face, than the baseline case. This is indeed not the case, just an observation that the jet shows

signs of less decay with the plasma field active when compared to the baseline case at the same location.[133]

Equivalent Mach 1.4, 5 Torr Constant-Diameter Axisymmetric Jet
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Figure 4.40: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Flow Created from a Tube Driven at a Mach 1.4 Pressure Ratio at 5 Torr

Again, Figure 4.40 continues to show visible change in the axial velocity when compared to the other

cases examined so far. And as in the subsonic case previous to this one, the shear layer growth rate reports

changes which are below the uncertainty threshold in Figure 4.40 (b). Figure 4.41 (a) and (b) show a cross-
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Figure 4.41: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Flow Created from
a Tube Driven at a Mach 1.4 Pressure Ratio at 5 Torr

section of mean axial velocity and turbulent kinetic energy at a station located 11.4 jet diameters from the

anode face. In similar fashion to the subsonic case of the previous section, a 9% increase in mean axial

velocity occurs at the centerline, when the plasma is turned on. However, the TKE decreases by 5% on the

centerline and increases by 3% in the shear layer. This is in contrast to the subsonic pressure ratio case F,

but is still consistent with the observation that the plasma-on case looks very similar to the plasma off case,

but at a station closer to the anode face.[133]

Equivalent Mach 1.9, 5 Torr Constant-Diameter Axisymmetric Jet

The final pressure ratio in this sequence results in an equivalent Mach number of 1.9. From Figure 4.42,

no noticeable changes in centerline axial velocity or shear layer thickness, or growth rate are observed. In

Figure 4.43, panel (a) similarly shows no change in the axial velocity profile. However, TKE (panel (b))

increases for the plasma-on case, when compared to the baseline case 11% along the centerline and 14% in

the shear layer.
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Figure 4.42: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Flow Created from a Tube Driven at a Mach 1.9 Pressure Ratio at 5 Torr
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Figure 4.43: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Flow Created from
a Tube Driven at a Mach 1.9 Pressure Ratio at 5 Torr
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Summary of Important Findings in Jets From Developing Pipe Flows

Here is a summary of the significant conclusions obtained in the comparison of mean and turbulent fluctu-

ations measured by particle image velocimetry of developing pipe flow jets with plasma-on and plasma-off.

• The jet created by the constant-diameter nozzle was effective in increasing turbulence intensities in

the core of the jet which translated into higher turbulent kinetic energy further downstream.

• The equivalent Mach 0.9 jet is influenced by the plasma considerably, given the relative weakness of

the plasma field which will be discussed more in Section 4.5. The plasma-on case had a centerline

velocity which was 8% higher than the plasma-off case at 11.4 diameters from the anode face. The

turbulent kinetic energy was 29 to 36% lower for the plasma-on case when compared to the plasma-off

case at this location.

• The equivalent Mach 1.4 jet showed a 9% increase in centerline axial velocity and a 5% decrease in

centerline TKE. In the shear layer however, the turbulent kinetic energy increased by 3%.

• For the high speed, equivalent Mach 1.9 case the axial velocity profiles looked the same, but turbulent

kinetic energy increased 11% on the centerline and 14% in the shear layer when the plasma was

initiated. This case shows shock and expansion phenomena in the jet core region from overexpansion

in the tube.

Given the trend for centerline velocity to rise when the plasma is turned on, the influence of plasma

appears to support the theory of the jet core penetrating further into a shear layer when it is heated by

the plasma field. The turbulent kinetic energy shows an interesting trend that appears to be related to

the variation in compressibility. For the subsonic pressure ratio the TKE dropped. At an equivalent Mach

1.4 the value of k was lower in the center and slightly higher in the shear and at equivalent Mach 1.9,

the TKE was higher. Possible causes for this are the change in convective velocity due to plasma heating,

or the plasma field interacting with the weak shocks in the core region to influence the flow downstream.

The next section will investigate the influence the plasma effects on an overexpanded converging-diverging

jet.[11, 193, 251]

148



4.2.6 Mach 1.9 (Overexpanded), 8 Torr Converging-Diverging Axisymmetric

Jet
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Figure 4.44: Contours of Mean Axial Velocity, U [m/s] Comparing the Nominal Mach 2.0 Jet to the Over-
expanded Jet, Driven at Mach 1.9 Isentropic Pressure Ratio
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Figure 4.45: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
in an Overexpanded Jet Driven at a Mach 1.9 Pressure Ratio at 8 Torr

r/D [ND]

U
[m

/s
]

-2 -1 0 1 2
0

100

200

300

400

500
Plasma On

Plasma Off

x/D = 6.2

(a) Mean Axial Velocity, U

r/D [ND]

(
)/

U
[N

D
]

-2 -1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Plasma On

Plasma Off

0
σ

+
u

σ
2

v
2

2

x/D= 6.2

(b) Turbulent Kinetic Energy, (σ2
u + σ2

v)/U2
o

Figure 4.46: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy in an Overexpanded Jet
Driven at a Mach 1.9 Pressure Ratio at 8 Torr
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Table 4.13: Estimation of Jet Exit Conditions for the Mach 1.9, 8 Torr Converging-Diverging
Axisymmetric Jet

Case Po (1) Pe (1) To (1) Me (2) Ue (1) Te (2) D? (1) De (1) ReD (2)
[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]

D 62.0 8.00 293 1.94 510 167 8.0 11.3 20208
(1) Measured Quantity
(2) Estimated From Plenum Temperature and Measured Exit Velocity

Figure 4.44 describes this off-nominal case where the baseline flow is a converging-diverging jet at Mach

2.0. The influence of plasma-on a weakly over-expanded jet is investigated here. The baseline Mach 2.0 jet

is driven at a pressure ratio equivalent to a Mach number of 1.9, details of jet exit conditions are found in

Table 4.13. The diamond shock-expansion structure is visible in panel (b) of Figure 4.44. Note that near

the jet exit, Section 4.2 showed that PIV results tend to smear shock structures and particle lag produces

errors in mean axial velocity. The reader is cautioned as to the accuracy of these results near the jet

exit. Further downstream, the flow becomes subsonic and allows the particles to effectively track the flow.

See Table 4.7 details the decrease in measurement uncertainty in turbulent fluctuations for this case (case

D).[76, 193, 219, 251]

Figure 4.45 shows the axial trends of centerline velocity and shear layer thickness for this overexpanded

off-nominal condition. When compared to section 4.4.4 (the baseline nominal case), the influence of the

plasma field is more pronounced. The centerline velocity decreases for the plasma-on case again, as well as

the plasma-on case shows a decrease in shear layer thickness and growth rate. In the off nominal case, the

growth rate decreases by 1.7% for the equivalent Mach 1.9 case, and only 1.1% for the nominal Mach 2.0

case.

Figure 4.46 shows the mean axial velocity and turbulent kinetic energy at 6.2 jet diameters from the

anode face. In this case, the axial velocity along the centerline increases 11 m/s for a 2.4% change in the

plasma-on case over the plasma-off condition. Recall, for the nominal jet, the increase was 5 m/s or a 1%

change. TKE decreases 31% along the centerline and 5% in the shear layer for the overexpanded plasma-on

condition over the corresponding plasma-off baseline. For the nominal Mach 2.0 jet, the centerline decrease

was 14% and an increase of 1% was noticed for the plasma-on case, when compared to its baseline plasma-off

case. From these remarkable changes in plasma for the slightly overexpanded condition, it is concluded that

the plasma field may have an impact on weak shocks. It has been hypothesized that a plasma field may

interact electrically with the dissociation which occurs in shock waves to weaken them thermally resulting in

a higher downstream fluid velocity in the presence of a plasma. Conversely, the convective Mach number is

lower in this case, when compared to the Mach 2.0 nominal case and that may be the driver for the change
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noticed here.[194, 193, 251]

4.2.7 Influence of Anode Design on Mean Flow and Turbulence
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Figure 4.47: Comparison of Turbulent Kinetic Energy between a Flat Anode and an Anode with Serrated
Conical Feature for a Mach 1.1 Axisymmetric Jet at 9 Torr - Plasma-Off

The last off-nominal case examined in this section is the influence of anode design on the mean and

turbulent structure of the jet. The baseline anode was a flat faced anode with rounded edges. Preliminary

investigations concluded that sharp edges, particularly from cap screws used to assemble older nozzles, were

sources of plasma instability at higher chamber pressures. However, the rough edges were advantages in

increasing the plasma field strength near the anode. Therefore, to investigate the effect of a stronger plasma

field near the jet exit an anode with serrated conical feature was examined. To insure a consistent evaluation,

first look at Figure 4.50. In this figure, the turbulent kinetic energy is shown for the plasma-off cases where

the only difference is the anode. Virtually no difference is noticed at the anode face in TKE, while minor

variations in TKE further downstream are attributed to minor differences in pressure ratio between the two

cases. Axial velocity is not shown here, as there was no noticeable difference at either location.[76]
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Figure 4.48: Plasma Effects on Downstream Progression of Centerline Jet Velocity and Shear Layer Thickness
for a Mach 1.1 Axisymmetric Jet at 9 Torr for an Anode with Serrated Conical Feature
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Figure 4.49: Plasma Effects on Mean Axial Velocity and Turbulent Kinetic Energy for a Mach 1.1 Axisym-
metric Jet at 9 Torr for an Anode with Serrated Conical Feature
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Table 4.14: Estimation of Jet Exit Conditions for the Mach 1.1, 9 Torr Converging-Diverging
Axisymmetric Jet

Case Po (1) Pe (1) To (1) Me (2) Ue (1) Te (2) D? (1) De (1) ReD (2)
[torr] [torr] [K] [ND] [m/s] [K] [mm] [mm] [ND]

B 20.5 9.15 293 1.13 350 233 15.2 15.7 8501
(1) Measured Quantity
(2) Estimated From Plenum Temperature and Measured Exit Velocity

Table 4.14 shows the exit conditions for this jet, case B. Figure 4.48 shows the difference between

plasma-off and plasma-on for the case where the anode is modified with serrated conical feature. No notice-

able difference is visible between centerline axial velocity, shear layer thickness or shear layer growth rate.

Figure 4.49 shows a cross-section of mean axial velocity and non-dimensional turbulent kinetic energy at a

location 4.3 diameters from the anode face. No changes are noted in axial velocity, while an 8% increase in

TKE in the shear layer is reported in the plasma-on case over the plasma off case. In the baseline flat anode,

it was previously reported that the shear layer increase in TKE was 3% for plasma-on over plasma-off.
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Figure 4.50: Comparison of Turbulent Kinetic Energy between a Flat Anode and an Anode with Serrated
Conical Feature for a Mach 1.1 Axisymmetric Jet at 9 Torr - plasma-on

Figure 4.50 compares the turbulent kinetic energy for plasma-on conditions between flat anode face

and anode face with serrated conical feature. There is no noticeable difference in TKE at the anode face,

however the increase in TKE near the cathode face is visible in the shear layer. The serrated conical feature
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is concluded to improve the influence of the plasma field on turbulent structure, without significant impact

on the mean flow. Note that mean flow features could be influenced by the plasma field more significantly

by the modified anode design if the gap distance were able to be increased, or for smaller diameter jets.

Additionally, the modified anode is not recommended for use at higher chamber pressures as arcs form easily

in the non-linear electric field created near the serrated cone. The modified anode design was used exclusively

for the 5 torr plasmas tested, while the 8-9 torr plasmas used the flat anode (with case B repeated with both

anodes for this section). More testing would have been done with the modified anode, however some of the

8-9 torr jets had larger exit diameters than the one available modified anode. Therefore, all the tests done

at the higher chamber pressure used flat anodes for consistency.

4.2.8 Summary of Important Findings from Particle Image Velocimetry

Measurements

The first cases examined by PIV looked at the influence of increasing pressure ratios for the conventional

converging-diverging nozzles. Here is a synopsis of the findings.

• At a chamber pressure of 5 torr, the Mach 1.4 jet was most influenced by the plasma field in terms

of mean axial velocity change. Measurements 11.3 diameters downstream of the anode face revealed

a 5.1% change in mean axial velocity at the centerline. A coincidental decrease in TKE of 5.1% also

occurred on the jet centerline, with a 3.1% increase in TKE in the shear layer.

• The Mach 0.7 jet at a chamber pressure of 9 torr showed no change in mean axial velocity between

plasma-on and plasma-off. Turbulent kinetic energy however showed a 7.1% increase in the shear layer.

There is a 6.7% change in k on the centerline, however the fact that TKE on the centerline of this jet

is so low makes this change negligible.

• The Mach 1.1 jet exhausting into a chamber pressure of 9 torr showed small changes in mean axial

velocity or fluctuating velocity measurements when comparing the plasma-on and plasma-off cases.

• The Mach 2.0 jet at 8 torr however, showed minor changes. The TKE along the centerline decreased by

14% noting that k along the centerline was small and therefore changes were magnified in percentage

analysis. The centerline mean axial flow also saw a change, the plasma-on case was 1% larger than the

plasma-off case which was a change of 5 m/s.

• These measurements support a supposition that the primary influence this plasma field has over the

coaxial jet is through heating the shear layer, thus decreasing the density and increasing the speed of
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sound locally. The jet core remains relatively undisturbed by the plasma field and therefore results in

an delay in core breakdown until further downstream.

Two factors contributed to the changes discovered so far. First, the largest driver in change appeared to

be chamber pressure when considering the effect of plasma, on mean and turbulent velocities. The optimal

distance between electrodes increased for decreasing chamber pressure. This increase in distance provided

longer plasma volumes along the shear layer of the jet which in turn produced longer jet resident times in

the plasma field and therefore increased the potential for plasma to influence the flow. The second factor

appeared to be related to jet diameter. Jet diameter influenced the location where the core breakdown of the

jet occurred. Core breakdown typically began before 8 jet diameters downstream of the anode. Therefore in

a fixed gap space, the jet with smaller exit diameter experienced core breakdown first - for a given pressure

ratio. The reduction of chamber pressure from 8-9 torr to 5 torr combined those effects. The lower chamber

pressure had an optimal electrode spacing increase of 50%. The chamber pressure was set by the mass flow

of gas passing through the vacuum pump. At 5 torr the mass flow rate through the pump was reduced

40% from 8 torr - requiring less mass flow to pass through the nozzle. The requirement for lower mass flow

through the nozzle then drove a smaller throat diameter which then allowed the jet to reach near self-similar

conditions. This nearly self-similar flow was marked by ever increasing turbulent fluctuations in the jet core

and shear layer. Therefore it was possible to conclude from these experiments that the plasma field shows

the most influence on flows which have higher concentrations of turbulence.[145, 224, 273]

Table 4.15: Effect of Increasing Mach Number on Converging-Diverging
Nozzles

Po Pe Ue Me x/D ∆Uo ∆[(σ2
u + σ2

v)/U2
o ]

Centerline
[torr] [torr] [m/s] [ND] [ND] [%] [%]

A 12.7 9.15 229 0.7 3.2 0.0 −6.7
B 20.5 9.15 350 1.1 3.2 0.0 −13.5
C 71.0 8.00 523 2.0 2.7 0.0 −9.3

Table 4.15 summarizes the results of the three perfectly-expanded nozzles at chamber pressures of 8-9

torr. The table begins on the left with the familiar case identifier for cross-reference. Next, the jet conditions

namely: plenum and chamber pressure, measured exit velocity and Mach number derived from Ue and the

plenum temperature are listed. To make a similar comparison, these results are all made roughly 3 diameters

from the jet face as indicated by the station location. Then the change in centerline velocity is listed, followed

by the percent change in scaled turbulent kinetic energy along the centerline, (σ2
u + σ2

v)/U2
o = 2k/U2

o .
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At this location, the centerline velocity is 96% of the measured exit velocity, indicating that core break-

down has not yet occurred which is reveals itself in this comparison as no change between the plasma-on

and plasma-off centerline velocities. However, in all three cases, the centerline turbulent kinetic energy

decreases when the plasma is initiated. At this axial location in the jet flow, centerline turbulent kinetic

energy decreases if the core is allowed to penetrate further downstream. Given the uncertainty of this mea-

surement is 6.7%, there is no trend versus Mach number - only a consistent decrease in centerline TKE for

all cases. Therefore it is concluded that the plasma effect on perfectly expanded jets is not dependent upon

Mach number in the developing jet, but that overall the plasma allows the jet core to penetrate further

downstream. It is believed that this penetration is an effect a bias of convective velocity to higher values

towards the jet core velocity - due to heating of the shear layer by the plasma field.[145, 224, 273]

The next three flow conditions examined the influence plasma for increasing equivalent Mach number on

mean and turbulent fluctuations for developing pipe flow jets.

• The jet created by the constant-diameter nozzle was effective in increasing turbulence intensities in

the core of the jet which translated into higher turbulent kinetic energy further downstream.

• The equivalent Mach 0.9 jet was influenced by the plasma considerably, especially given the relative

weakness of the plasma field. The plasma-on case had a centerline velocity which was 8% higher than

the plasma-off case at 11.4 diameters from the anode face. The turbulent kinetic energy was 28 to 36%

lower for the plasma-on case when compared to the plasma-off case at this location.

• The equivalent Mach 1.4 jet showed a 9% increase in centerline axial velocity and a 5% decrease in

centerline TKE. In the shear layer however, the turbulent kinetic energy increased by 3%.

• For the high-speed, equivalent Mach 1.9 case, the axial velocity profiles looked the same, but turbulent

kinetic energy increased 11% on the centerline and 14% in the shear layer when the plasma was initiated.

This case shows shock and expansion phenomena in the jet core region from pressure mismatches in

the tube nozzle.

Figure 4.51 shows the change in scaled turbulent kinetic energy (σ2
u + σ2

v)/U2
o = 2k/U2

o as a function of

downstream location for all three equivalent Mach numbers tested. The centerline change in scaled TKE is

based on an average of the four points closest to the centerline and then calculated as the difference between

the plasma-off case and the plasma-on case at that location. The shear layer location was determined as the

location of the peak in axial turbulence intensity, σu. From this peak location, the four nearest points were

averaged.
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Figure 4.51: Effect of Increasing Equivalent Mach Number on Constant-Diameter Tube Nozzles

There is a trend present in scaled turbulent kinetic energy with increasing effective Mach number. Ini-

tially, the Mi = 0.9 jet sees a reduction in TKE as the flow progresses downstream. At an effective Mach

number of 1.4, the trend stagnates and then begins to reverse. At Mi = 1.9 the effect is reversed, with

plasma beginning to increase TKE as the flow travels downstream. Reynolds number effects were inves-

tigated, by computing a local Reynolds number, based on the jet diameter, local centerline velocity Uo,

an estimate for density based on chamber pressure and estimated jet temperature T1, and viscosity based

on measured shear layer temperatures from spectroscopy (presented later in this chapter). The Reynolds

number calculations showed a general decrease of 8 to 16% with plasma-on and did not show any trends

with Figure 4.51. Therefore, it is concluded that the trend in turbulence is for an initial decrease, switching

to an increase in TKE as the effective Mach number progresses from subsonic to supersonic values. The

developing pipe flow which generated this flow is a complicated jet structure with many rich features for the

plasma field to interact with. The supersonic flow begins smoothly, but then develops a pattern of reflected

shocks and expansions from observation of the velocity fluctuations in the centerline velocity near the jet

exit. It is possible that the plasma field is interacting with the shock structures in the jet. Weakened shocks

would allow for increased jet turbulence through higher core velocities passing downstream. Evidence of the
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higher core velocities was absent from these measurements, however the increase in TKE for the Mi = 1.9

jet could be a precursor to higher plasma-on core velocities further downstream. A computational study

on the developing pipe flow jet and influences from shear layer heating by a simulated plasma field are

recommended for further research.[133, 193, 194, 251]

Table 4.16: Comparison Between Perfectly-Expanded and Overex-
panded Jets

Po Pe Ue Me x/D ∆Uo ∆[(σ2
u + σ2

v)/U2
o ]

Centerline
[torr] [torr] [m/s] [ND] [ND] [%] [%]

C 71.0 8.00 523 2.0 6.2 1.0 −13.9
D 62.0 8.00 510 1.9 6.2 2.4 −31.2

The next comparison shown in Table 4.16 is of an off-nominal case, where the baseline flow is a converging-

diverging jet at Mach 2.0 (case C). The influence of plasma on a weakly overexpanded jet is investigated

here. The baseline Mach 2.0 nozzle is driven at a pressure ratio equivalent to a Mach number of 1.9 (case

D). When compared to the baseline nominal case, the influence of the plasma field is more pronounced on

the overexpanded jet.

• In case D, the axial velocity along the centerline increases 11 m/s for a 2.4% change in the plasma-on

case over the plasma-off condition. For the nominal jet (case C), the increase was 5 m/s or a 1%

change.

• TKE decreases 31% along the centerline and 5% in the shear layer for the overexpanded plasma-on

condition compared to plasma-off. For the nominal Mach 2.0 jet, the corresponding centerline decrease

was 14% with no detectable change in the shear layer.

From these changes in plasma for the slightly overexpanded condition, it is concluded that the plasma field

may have an impact on weak shocks. It has been hypothesized that a plasma field may interact with the shock

waves to weaken them thermally resulting in a higher downstream fluid velocity in the presence of a plasma.

Conversely, the convective Mach number is lower in this case, when compared to the Mach 2.0 nominal case

and that may be another driver for the change noticed here. In either case, the effect of the plasma-on was

more pronounced in the overexpanded jet than in the perfectly expanded jet.[133, 193, 194, 251]

The final comparison, shown in Table 4.17, was to examine the effect of anode design on the plasma field

and the resulting impact on mean velocity and velocity fluctuations. On the left, the table begins with the

case identifier for cross-reference. Next, the jet conditions namely: plenum and chamber pressure, measured

exit velocity were listed. Then the Mach number derived from Ue and the plenum temperature is listed
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Table 4.17: Comparison Between Flat Anode and Anode with Serrated Conical Tip
Feature

Po Pe Ue Anode Me x/D ∆[(σ2
u + σ2

v)/U2
o ]

Design Centerline Shear Layer
[torr] [torr] [m/s] [ND] [ND] [%] [%]

B 20.5 9.15 350 flat 1.1 4.5 1.9 2.7
B’ 20.5 9.15 347 ser-cone 1.1 4.3 2.8 7.7

next to the measurement location x/D. Finally, the percent change in scaled turbulent kinetic energy ,

(σ2
u + σ2

v)/U2
o = 2k/U2

o were presented for locations along the centerline and in the shear layer, respectively.

• The shape modified anode was a significant feature which had the potential to change the jet structure

without the influence of plasma. However, the modified anode tip was near the jet exit with supersonic

speeds and the orifice for the jet to exit through was larger than the jet exit to minimize the potential

for influence.

• The mean flow and turbulent kinetic energy did not change when comparing the plasma-off flow with

the flat anode to the plasma-off flow with the modified anode. Therefore it is concluded that the

presence of the modified anode had no significant impact on the measurements being taken.

• In comparing plasma-on cases between the anode designs, the mean centerline velocity was unchanged.

• Turbulent kinetic energy increased on the centerline by 2% for the flat anode, and by 3% for the

modified anode. In the shear layer, the increases were 3% and 8% respectively.

From these measurements it was concluded that the modified anode design improved the influence of the

plasma field on turbulent structure, but did not significantly impact on the mean flow in this case. Note

that mean flow features could be influenced more significantly by the plasma field if the gap distance were

increased, or for smaller diameter jets. The modified anode was not recommended for use at higher chamber

pressures as arcs form easily in the non-linear electric field created near the serrated cone. The modified

anode design was used exclusively for the 5 torr plasmas tested, while the 8-9 torr plasmas used the flat

anode (with the exception of case B repeated with both anodes for this comparison). The modified anode

could have been used on cases C and D, however case A had a larger exit diameter than the modified anode.

Therefore, all the tests done at the higher chamber pressure used flat anodes for consistency.[145]
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4.3 Large Scale Structure Tracking by Means of Laser Energy

Deposition

The tracking of large scale structures in the shear layer is an excellent technique for measuring the convective

velocity of the shear layer. This section is important because the influence of plasma-on the speed of sound in

the shear layer could provide significant insight into the mechanism of influence on mean flow and turbulent

fluctuations presented in the previous section. This section will provide some illustrative plots to better

describe how the process of tracking structures in the shear layer was accomplished. Next the large scale

structure tracking effort is reduced into convective velocity measurement, which is reported for each case

tested.

To track structures in the shear layer, the use of large scale structures by laser energy deposition is

employed. Pulsed laser energy is focused to a point at the exit of the nozzle, in this case on the lip of the

anode. This focused energy creates a large disturbance in the shear layer which quickly forms a vortex roller

structure that moves downstream at the convective velocity Uc. This large scale structure is visualized by

phase-locked particle image velocimetry in a sequence of increasing time delays, allowing the structure to

travel downstream through the measurement window carried by the convective velocity. The structure is

tracked by means of a centroid tracker of a contour of tangential velocity, scaled by the convective velocity

Uci. In actuality, the tangential velocity contour which is tracked corresponds to the wave formed in the

core attached to the large scale structure.[11]
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Figure 4.52: Baseline Flow Undisturbed by Laser Energy Deposition

Figure 4.52 shows a baseline jet (case E’) in a shifted reference frame. The reference frame is shifted by

the convective velocity, Uc = (a1U2 + a2U1)/(a1 + a2) where U1 is the high speed flow velocity, U2 is the

low speed flow velocity, a1 and a2 are the speed of sound in the high and low speed flow, respectively. In

this case, U1 is the core exit velocity and U2 is zero. The speeds of sound are calculated with temperatures
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estimated from the plenum temperature. Note in this reference frame, the axial velocity is negative for the

quiescent fluid at the top and bottom of panel (a). The tangential velocity scaled by Uci in panel (b) was

found by Adelgren [11] to be the best variable to track the large scale structure and was confirmed in this

investigation as well. Note that for undisturbed axisymmetric jets, the tangential velocity is under 10%

of the incompressible convective velocity and therefore shows up as green in the contours in panel (b) of

Figure 4.52.

Figure 4.53: Schematic of Large Scale Structure Pointing Out the Tracking Feature

Figure 4.53 shows contours of mean velocity in the tangential direction scaled by the convective velocity.

Overlayed on the contour are vectors in the convective frame with streamlines integrated from the velocity

field in that same frame. The jet boundaries are roughly indicated by the grey dashed lines, where the jet is

proceeding through the frame from left to right. In the convective reference frame the quiescent air appears

to be traveling to the left at the convective speed. The location highlighted as the tracking feature marks

the outer region of the vortex structure with rotational motion in that region directed towards the jet core.

This is the feature which will be tracked to measure convective velocity. Next, laser energy deposition will

be used to see the formation of the large scale structure.
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(e) Plasma-Off, 160µs
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(f) Plasma-On, 160µs

Figure 4.54: Influence of Plasma on Large Scale Structure Motion Using Time Phased Framing of Axial
Velocity Relative to the Convective Frame of Motion

To give an idea of the level of disturbance injected into the flow from laser energy deposition (LED),

Figure 4.54 shows contours of axial velocity for the jet driven at the conditions of case H - now disturbed

by laser energy deposition. On the left are contours for the plasma-off cases at three different phase-locked

time steps. The plasma is on for the cases on the right and show the results for the same time steps. Note

the progression of the disturbance downstream for increasing delay times. The LED system was measured

to deposit 20 mJ of energy to the lip of the anode which created this structure. The amount of energy

deposited was optimized based on the findings of Adelgren [11]. Different levels of energy deposition were

investigated for this experiment as well and confirmed the 20 mJ level as best. Higher energy deposition

levels resulted in a structure which dominated the flow field enough to alter the convective velocity being

measured, while lower energy levels produced structures which were hard to track. The energy levels were
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set by use of neutral density filters placed in the beam path upstream of the focal point and measured

throughout testing by periodic spot checks with a laser power meter and realtime by boxcar integration of

the photodiode response of each pulse.
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Figure 4.55: Influence of Plasma on Large Scale Structure Motion Using Time Phased Framing of Tangential
Velocity Relative to the Convective Frame of Motion

Figure 4.55 shows contours of tangential velocity scaled by Uci to highlight the ease of tracking the large

scale structure. Note here that the contours of Figure 4.55 are the same as Figure 4.52 (b). The disturbance

created by laser energy deposition produces a large scale structure with velocities that are more than 30%

of the convective velocity. Plasma-off conditions again are on the left and plasma-on are on the right, in

a progression of phase-locked time steps. The circular region of negative tangential velocity provides a

consistently circular region, easily tracked by integration of a specific contour to determine the centroid

position.
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Based on a worst case variation in contour level choice, the uncertainty of centroid position was estimated

at 0.2 mm for this measurements technique. To determine the uncertainty in convective velocity measure-

ment, two independent position measurements are required. Therefore the contribution of centroid position

uncertainty to convective velocity measurements is 0.28 mm. The uncertainty in timing measurement is 8

ns. Given the relatively small contribution of timing error in the calculation of convective velocity, it is

neglected in the uncertainty analysis.[92]
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Figure 4.56: Comparison of Large Scale Structure Motion by Centroid Tracking

Figure 4.56 shows the progression of contours in tangential velocity which were used in the centroid

tracking analysis. These contours were a compilation of the images found in Figure 4.55. The green contours

represent the plasma-off cases for all three time delays to show the progression of the structure. The dashed

red lines are the plasma-on contours at the corresponding time delays. From the progression of contours for

each time step, there is visible evidence of differences in convective velocity when the LED flow is influenced

by the plasma field.

In each case more than 800 PIV image pairs were examined at every time step for both the plasma-off

and plasma-on conditions. From the mean velocity fields in a reference frame traveling downstream with the

incompressible convective velocity, contours of tangential velocity were created for each jet, time delay and

plasma state. These contours were examined to determine the best contour to use for tracking, based on

the shape of the contour and the quality with which it represented the location of the large scale structure.

Care was taken in order to keep the selected contour to remain at the same level (±5%) relative to other

time delays and plasma states for that jet. The chosen contours were then subjected to centroidal analysis.

From the time of flight of the centroid, the convective velocity was calculated. Table 4.18 summarizes the

results of the centroid tracking analysis.[11]

Table 4.18 is broken into sections based on nozzle type and anode design in order to highlight trends. The
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Table 4.18: Summary of Large Scale Structure Tracking Analysis

Case Mi Uc Uc Measured ∆Uc ∆t ∆Uc

Predicted Plasma Off Plasma On Uncertainty
[ND] [m/s] [m/s] [m/s] [m/s] [%] [µs] [%]

8-9 Torr Converging-Diverging Nozzle Series with Flat Anode
A 0.8 91.4 100.4 108.0 7.6 7.6 100 2.8
B 1.1 156.8 177.6 185.4 7.9 4.4 90 1.8
C 2.0 285.8 324.3 329.0 4.8 1.5 40 2.2
8-9 Torr Converging-Diverging Nozzle Using Anode with Serrated Conical Feature
B’ 1.1 156.8 187.7 198.7 11.0 5.9 30 5.0
5 Torr Constant-Diameter Nozzle Series Using Anode with Serrated Conical Feature
F’ 0.9 77.8 96.3 96.7 0.4 0.4 150 2.0
G’ 1.4 175.5 202.3 205.5 3.3 1.6 40 3.5
H’ 1.9 237.9 268.6 275.0 6.4 2.4 50 2.1
5 Torr Converging-Diverging Nozzle Using Anode with Serrated Conical Feature
E’ 1.4 204.2 218.3 225.8 7.5 3.4 40 3.2

cross-reference case identifiers lead off the table, with prime marks (’) indicating the modified anode. The

equivalent Mach number Mi is based on measured pressure ratio, while the predicted convective velocity is

based on an assumed isentropic flow. Next the convective velocity measurements are presented for plasma-

off and plasma-on. Note that the convective velocity measured by tracking contours of radial velocity picks

up the wave attached to the large scale structure in the jet core and as such is biased toward the high

side velocity. The change in convective velocity and percent change are listed next. Next, the difference

in delay time used to calculate time of flight is presented as it is the most variable factor in calculating

the measurement uncertainty. The uncertainty in measuring a change in convective velocity finishes the

table.[11, 92]

Overall, all convective velocity measurements in Table 4.18 show an increase when the plasma is turned

on. The first sequence is of the perfectly expanded jets showing the change with increasing Mach number.

The clear trend in this sequence is decreasing effectiveness for increasing Mach number. The plasma could

be less effective for increasing Mach number do to an increased convection of the heated plasma gases out

of the plasma field by the higher jet speeds and mass flows represented with increasing Mach number.

Next the effect of anode design and resulting change in plasma field is investigated by convective velocity

measurements. From this measurement, it appears that the modified anode design produces a more effective

plasma field which is able to increase the convective velocity 1.5% over the flat anode plasma.[193, 194, 251]

Next, using the modified anode, the series of jets created by developing pipe flow from a constant-diameter

nozzle are studied. For increasing pressure ratio, the trend is for the plasma field to be more effective on

convective velocity. In this case, the increased mixing caused by increased shear layer turbulence of a

constant-diameter nozzle may provide more thermal interaction in the shear layer. This thermal interaction
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could raise the speed of sound and the convective velocity. This trend is opposite what was found for perfectly

expanded nozzles and appears to be a function of a difference in nozzle design. Case E’ in the last row is a

direct comparison of nozzle design with the same pressure ratio as Case G’. The converging-diverging nozzle

of E’ shows a 3.4% change with the plasma-on, a 1% increase when compared to the constant-diameter nozzle

at the same pressure ratio. From this result, it appears that the convective velocity of perfectly expanded

nozzles are more influenced by the plasma than developing pipe flow nozzles. Constant-diameter nozzles

may be less susceptible to changes in convective velocity due to the increase in turbulence associated with

the developing pipe flow.[133, 194, 193, 251, 399]

Some observations surface in review of the information in Table 4.18. Note that in each case, the plasma-

on convective velocity is higher than the baseline plasma-off measurement. From the worst-case uncertainty

evaluation, some of the cases fall below the threshold of measurement uncertainty. In general, 3 to 4 different

time steps were measured. Each time step includes between 828 and 1104 image pairs processed through

particle image velocimetry. To achieve the lowest uncertainty measurement, the longest difference in time

step, ∆t, was chosen. In some cases, time steps were discarded when the contour was partially out of the

field of view. Therefore, in cases C, F’ and G’, the uncertainty is unfortunately higher than desired in order

to conclusively measure change.

Summary of Important Findings from Large Scale Structure Tracking

It is postulated here that the reason for the increase in convective velocity with the plasma-on can be

attributed entirely to the increase in gas temperature in the shear layer as a result heating by the plasma

field. The compressible convective velocity, Uc can be related to the temperature of the jet and of the

chamber through Uc = (a2U1 + a1U2)/(a1 + a2) - where U1 is the core velocity of the jet and U2 is zero in

these cases. Therefore an increase in the the chamber temperature surrounding the jet, T2 from 300 K to

400 K would result in an increase in convective velocity of 7% for all the cases in Table 4.18. In an effort

to quantify the T2 required to produce the measured change in convective velocity, the equation above is

manipulated into a more convenient form in Equation 4.14.

T2−plasma =
(Uc−plasma/Uc)2T1T2

(
√

T1 +
√

T2(1− Uc−plasma/Uc))2
(4.14)

The result (T2−plasma) is the shear layer temperature required to bring about the measured change in con-

vective velocities Uc−plasma/Uc. The plasma-off shear layer temperature is assumed to be near the measured

plenum temperature, which averaged at 294 K. Based on the measured core and convective velocities, shear

layer temperatures between 315 K and 378 K would produce the measured change in convective velocity.
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4.4 Plasma Imagery of Visible Light Emission

Figure 4.57: Schematic of Pho-

ton Emission from a Collision-

ally Excited Molecule

As an assessment of the plasma field, visible light from plasma emission

was collected for each case studied. Visible light emission from the plasma

field is an easily observable phenomena which indicates the presence of

a strong plasma field. Figure 4.57 is a drawing of a collisionally excited

molecule releasing a photon and dropping from an excited electronic state

E2, to a lower state E1. The plasma works on the both the radicals and

molecules, pumping them into electronic states much higher than ground.

One of the readily apparent indicators of the presence of molecules in

elevated electronic states is photon emission. And therefore in locations

where there are high concentrations of molecules and radicals emitting

photons, it can be deduced that the field performing the work on those

molecules is high. By capturing light on a charge-coupled device with constant exposure settings, the relative

grayscale intensity of the light can be compared to provide a figure of merit on the plasma strength for each

case.[229, 308]

To begin, the series of jets created by converging-diverging nozzles at 8-9 Torr were investigated which

comprised of cases A, B and C. Then the effect of anode design was compared between case B and B’. Then

the series of jets created by developing flow from constant-diameter axisymmetric nozzles at 5 Torr (cases

F, G and H) are described by their light emission and compared to plasmas fields at 8 Torr (between case

C and case E). Finally, an examination of a barrel shock structure is investigated (case U)- showing the

location of the normal shock disk.

4.4.1 Effect of Compressibility on Plasma Fields for Perfectly Expanded Jets

Table 4.19: Plasma and Jet Configuration for the Series of Converging-Diverging Nozzles with
Flat Anodes at a Chamber Pressure of 8-9 Torr

Mi Po Pe Ue De Da G Pf Pr Vbias CT CL

[ND] [torr] [torr] [m/s] [mm] [mm] [mm] [W] [W] [V] [%] [%]
A 0.7 12.5 9.15 229 20.8 21.4 75.8 95 0 6-16 19.1 50.3
B 1.1 20.5 9.15 348 11.3 11.5 79.1 110 0 11-30 18.8 48.0
C 2.1 71.0 8.00 523 15.7 17.0 75.8 94 0 5-21 19.1 52.2

Table 4.19 lists the settings used to create the plasma fields which were imaged on the next three pages.

Tables with these parameters appear throughout this section. Great detail will be provided on the meaning

of each of the parameters here, and the remaining tables will serve as a reference with discussion focused on
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the most salient features. The case identifier again leads off the table for cross-reference purposes, followed

by the jet conditions. The equivalent Mach number Mi is calculated based on the ratio of pressures between

the chamber (Pe) and plenum (Po) and assumes isentropic flow through the nozzle. Next, the physical

features of the jet and electrodes are presented. The exit diameter of the jet De is found in column 6 from

the left and is useful in converting the scaling downstream and tangential positions (x and r, respectively)

between the electrode gap space G and jet exit diameter. All of the charts which follow scale the coordinates

by gap spacing for the convenience of making comparisons between plasmas with different gap spacings. Gap

spacing is a strong factor in plasma strength and therefore G becomes an important length scale regarding

the plasma field, while the most important length scale for the jet is the exit diameter. The parameter Da

is the diameter of the hole bored through the anode. The jet exhausts into the test chamber and plasma

through the hole in the anode. The anode diameter is larger than the jet exit diameter to prevent weak

shocks from occurring in the jet from a seam or lip at the junction between the nozzle and anode.[14, 145]

The far right section of the table contains the plasma parameters set on the Dressler Cesar RF plasma

generator. The forward power Pf was the power level controlled by the plasma generator. It was set about

5% below the level at which the plasma field showed signs of instability (the indicators of transition into an

arc plasma). Next, tuning was performed to drop the reflected power Pr to zero. Reflected power was a

sign of impedance mismatch between the plasma generator and the rest of the circuit. Following the initial

optimization procedure, only minor variations in the tuning (CT ) and load (CL) capacitors were needed

(under 5%) in order to maintain impedance balance and drive the reflected power to zero. The bias voltage

Vbias, was an indicator of good plasma quality. For these experiments, the best bias voltages hovered around

20 V. The bias voltage was a DC potential applied to the RF power signal and was automatically controlled

by the plasma generator and compensated for the electric field created by the plasma volume. A higher

bias voltage corresponded to a stronger electric field (for a given chamber pressure and gap space) which

therefore implied a stronger plasma field or larger plasma volume as the electric field in the gap was caused

by the potential created from increasing distances between the radicals and free electrons and the number

of ions in the plasma volume.[33, 145, 308]

In Table 4.19 note that the gap distance, G, was held relatively constant and that the forward power,

Wf increased with increasing Mach number and decreased for decreasing chamber pressure. In each case the

power was increased to the point of plasma instability, and then reduced to roughly 95% of the instability

threshold. The tune (CT ) and load (CL) capacitors were manually adjusted to maximize bias voltage. The

bias voltage fluctuated throughout each test. The plasma generator controlled Vbias to maintain plasma

stability. The limits of fluctuation were recorded in the table.[33, 145, 308]
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(a) Contours of Relative Intensity
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(b) Relative Intensity along the Centerline

Figure 4.58: Relative Intensity of Visible Emission from the Plasma Field for a Flat Anode Around a Mach
0.6 Axisymmetric Jet at 9 Torr
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(a) Contours of Relative Intensity
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(b) Relative Intensity along the Centerline

Figure 4.59: Relative Intensity of Visible Emission from the Plasma Field for a Flat Anode Around a Mach
1.1 Axisymmetric Jet at 9 Torr

171



(a) Contours of Relative Intensity
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(b) Relative Intensity along the Centerline

Figure 4.60: Relative Intensity of Visible Emission from the Plasma Field for a Flat Anode around a Mach
2.0 Axisymmetric Jet at 8 Torr
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The goal in plasma tuning was to produce a uniform and symmetric (about the centerline of the jet)

visible emission between the cathode and the anode. The plasma could not transition into an unstable

thermal mode such as an arc discharge. If the plasma emission did not reach the entire distance from the

cathode to the anode, the power was incrementally adjusted to achieve the maximum plasma volume in the

electrode gap. Typical behavior of the plasma was to begin as a cathode layer and grow with a positive

column towards the anode with increasing forward power. Forward power was increased until hints of

instability appeared, the first signs of instability were typically asymmetries on the cathode which grew into

visible waves which traveled toward the anode. At this point, the power was reduced slightly to eliminate

the plasma waves. If the waves were left uncountered, they would transition to an arc later during testing.

When creating a plasma for increasing Mach numbers, the forward power was not able to be fixed at one

value. The highest power settings used at Mach 2.0 would have transitioned immediately to an arc at the

lower jet speeds, while the low power setting used in the subsonic case would not have ignited a plasma for

the faster jets.[33, 145, 229, 251, 308]
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Figure 4.61: Comparison Between Increasing Pressure Ratios of Relative Intensity of Visible Emission Along
the Centerline of the Plasma Field for a Flat Anode around Axisymmetric Jets at Mach 0.6, 1.1 and 2.0 at
8-9 Torr

Figures 4.58 through 4.60 indicate the relative intensity of visible light emitted by the plasma field, with

flow going across the contour from left to right. There was a clear increase in visible light emitted with

increasing Mach number. The increase in photon emission was an indicator of increased plasma strength.
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The higher Mach number flows were better at carrying heat away from the plasma field through convection,

which allowed for higher forward power settings and produced larger plasma volumes. The larger plasma

volumes radiated more visible light. Table 4.19 indicated that the Mach 2.1 jet did not follow the trend of

increasing forward power for increasing Mach number. The Mach 2.1 jet exhausted into a chamber pressure

of 8 torr, required for matched flow conditions. The lower chamber pressure required less forward power for

a given electrode gap and therefore it was difficult to compare plasma fields based solely on forward power

and bias voltage. Figure 4.61 provides a summary of the increasing illumination for Mach number along the

centerline across the electrode gap. The cathode glow region was marked by the increased intensity at the

right of the figure. In the center of the electrode gap, the light intensity was caused by the positive column

structure and was highest for the Mach 2.0 case near the anode. Also note that there is a clear anode glow

region for the Mach 2.0 case. Both of these features were caused by the plasma field reaching across the

electrode gap with the most uniformity for the Mach 2.0 case versus the Mach 0.7 and 1.1 cases. For the

slower speed cases, their strongest intensity occurs at the cathode glow and then drops monotonically until

reaching the anode. The Mach 1.1 case shows measurable intensity all of the way to the anode, while the

Mach 0.7 case drops to zero at 40% of the distance from the anode.[33, 145, 308]

4.4.2 Effect of Anode Design on Visible Light Emissions from the Plasma

Field

The influence of anode design will be examined next by comparing cases B and B’. These plasmas were

created using the same nozzle, and pressure ratio as are indicated in Table 4.20.

Table 4.20: Plasma and Jet Configuration Comparing Anode Design for the Mach 1.1 Converging-
Diverging Nozzle at a Chamber Pressure of 9 Torr

Mi Po Pe Ue De Da G Pf Pr Vbias CT CL

[ND] [torr] [torr] [m/s] [mm] [mm] [mm] [W] [W] [V] [%] [%]
B 1.1 20.5 9.15 348 11.3 11.5 79.1 110 0 11-30 18.8 48.0
B’ 1.1 20.5 9.15 348 11.3 15.9? 76.7 100 0 6-17 19.8 60.0
? This anode includes a serrated conical feature which extends into the electrode gap 5.8mm.
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(a) Contours of Relative Intensity
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(b) Relative Intensity along the Centerline

Figure 4.62: Relative Intensity of Visible Emission from the Plasma Field for an Anode with Serrated Conical
Feature Around a Mach 1.1 Axisymmetric Jet at 9 Torr
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Figure 4.63: Comparison Between Anode Designs of Relative Intensity of Visible Emission Along the Cen-
terline of the Plasma Field for an Anode with Serrated Conical Feature and a Flat Anode Around a Mach
1.1 Axisymmetric Jet at 9 Torr

Figure 4.62 shows the light emitted from the plasma field for the Mach 1.1 converging-diverging nozzle

at 9 torr with the anode modified with a serrated conical feature. The advantage of the modified anode

over a flat-faced anode was the creation of a small corona discharge in the serrations similar to a flame

holder, which then had the effect of drawing the plasma field towards the anode. The feature was created

by the addition of a cone segment which forms a sharp lip. The lip was further altered by eight serrated

grooves cut into the circumference of the lip. A comparison between the flat anode and the modified anode

is made in Figure 4.63. Note that the plasma illumination drops near the cathode (right) when the modified

anode is employed. The effect at the anode face is not clear from Figure 4.63 - as only illumination along

the centerline is described. However in comparing Figure 4.59 to Figure 4.62 there is clear evidence that

the plasma field is drawn toward the anode. Table 4.20 indicates that forward power and bias voltage are

decreased for the modified anode. Note here that the electrode gap is measured from the flat face of the

anode to the face of the cathode and that the serrated conical feature extends into the gap by 5.8mm.

This effectively decreases the electrode distance and therefore less forward power is required before plasma

instabilities occur. Additionally, the sharp features of the serrated cone were a source of plasma instability

as corona discharges formed in the serrations and quickly transitioned to arc discharges - requiring extra

margin in forward power to maintain stable plasma fields.[33, 145, 308]
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4.4.3 Effect of Compressibility on Plasma Fields for Developing Pipe Flow

Jets

Since the improvement on the plasma field by the modified anode design was desired to influence more of the

jet shear layer, the modified anode was used for all of the 9.5 mm diameter nozzles. Given the complexity

of building this anode, only one of them was constructed. Next the visible light emissions for plasma fields

around developing pipe flow jets will be examined for increasing equivalent Mach numbers.

Table 4.21: Plasma and Jet Configuration for the Series of Constant-Diameter Nozzles for an
Anode with Serrated Conical Feature at a Chamber Pressure of 5 Torr

Mi Po Pe Ue De Da G Pf Pr Vbias CT CL

[ND] [torr] [torr] [m/s] [mm] [mm] [mm] [W] [W] [V] [%] [%]
F’ 0.9 8.0 5.00 279 9.5 15.9? 77.4 19 0 2-5 19.7 71.1
G’ 1.4 16.5 5.00 412 9.5 15.9? 76.5 47 0 6-13 19.6 69.7
H’ 1.9 34.0 5.00 498 9.5 15.9? 76.5 100 0 8-18 19.7 69.6
? This anode includes a serrated conical feature which extends into the electrode gap 5.8mm.

Figures 4.64 through 4.66 step through the visible light emitted from the plasma field for increasing

pressure ratios exiting into a chamber at a pressure of 5 torr. The jet was created by a constant-diameter

tube, 9.5mm in diameter and 12.7 cm long. The jet exit speed was varied by changing the plenum pressure,

and while the flow conditions achieved were not isentropic, a large range of Mach numbers were investigated.

The constant-diameter nozzle was used to increase the turbulence in the jet core from the developing pipe

flow which was created through this nozzle.
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(b) Relative Intensity along the Centerline

Figure 4.64: Relative Intensity of Visible Emission from the Plasma Field for an Anode with Serrated Conical
Feature Around an Axisymmetric Jet of Developing Pipe Flow Driven at a Pressure Ratio Corresponding
Isentropically to Mach 0.9
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(b) Relative Intensity along the Centerline

Figure 4.65: Relative Intensity of Visible Emission from the Plasma Field for an Anode with Serrated Conical
Feature Around an Axisymmetric Jet of Developing Pipe Flow Driven at a Pressure Ratio Corresponding
Isentropically to Mach 1.4
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(a) Contours of Relative Intensity
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Figure 4.66: Relative Intensity of Visible Emission from the Plasma Field for an Anode with Serrated Conical
Feature Around an Axisymmetric Jet of Developing Pipe Flow Driven at a Pressure Ratio Corresponding
Isentropically to Mach 1.9
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Figure 4.67: Comparison Between Increasing Pressure Ratios of Relative Intensity of Visible Emission Along
the Centerline of the Plasma Field for an Anode with Serrated Conical Feature Around an Axisymmetric
Jet of Developing Pipe Flow Driven at Pressure Ratios Corresponding Isentropically to Mach 0.9, 1.4 and
1.9

Table 4.21 summarizes the settings used in creating these plasma fields and clearly show the increase

in forward power and bias voltage with increasing equivalent Mach number, Mi (based on the isentropic

relation to pressure ratio). The extent of the plasma field is summarized in Figure 4.67 and shows a clear

increase in emission intensity with the increasing pressure ratio. This increase in illumination is directly

related to the increase in forward power and the resulting increase in plasma field. Increasing pressure ratios,

provide increasing convection of the heat generated by the plasma field and therefore prevent the plasma

from transitioning to an arc due to thermal instability until much higher forward power levels. These results

are consistent with what was found earlier in this section at higher chamber pressures. [33, 145, 308]

4.4.4 Comparison of Visible Light Emitted Between Plasmas at 8 Torr and 5

Torr

Figure 4.68 compares the centerline visible relative light intensity between plasma fields at 5 and 8 torr.

Both fields are the highest forward power settings achieved in each sequence - to provide the best comparison

between intensity levels across the electrode gap. There is a significant increase in light emission near the

anode, which is attributed to the difference in anode design between the two cases. In the center of the
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Table 4.22: Comparison of Plasma and Jet Configuration for Increasing Chamber Pressure

Mi Po Pe Ue De Da G Pf Pr Vbias CT CL

[ND] [torr] [torr] [m/s] [mm] [mm] [mm] [W] [W] [V] [%] [%]
C 2.1 71.0 8.00 523 15.7 17.0 75.8 94 0 5-21 19.1 52.2
H 1.9 34.0 5.00 498 9.5 15.9? 76.5 100 0 8-18 19.7 69.6
? This anode includes a serrated conical feature which extends into the electrode gap 5.8mm.
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Figure 4.68: Comparison Between Chamber Pressures of 5 Torr and 8 Torr of Relative Intensity of Visible
Emission Along the Centerline of the Plasma Field

plasma field, intensity levels increased 11% when the chamber pressure was lowered from 8 torr down to

5 torr, suggesting a stronger pressure field at lower chamber pressure. Table 4.22 indicates forward power

showed an increase of 6% while mean bias voltage remained unchanged. Differences were encountered in

creating plasmas at the two chamber pressures. It was significantly easier to start a plasma at 5 torr than at

8-9 torr and lower chamber pressures were also found to be less sensitive to electrode gap changes. However,

when tuned, the plasma fields appear to be similar in terms of light emitted.

4.4.5 Visible Light Emissions from a Highly Underexpanded Jet at 8 Torr

The next case to be investigated was the highly underexpanded jet created by flow exiting a sonic orifice.

The sonic orifice is aptly named because the flow chokes at the nozzle exit. The resulting near field flow

is left to form its own nozzle with strong reflected shocks and expansions in order to equalize the pressure

differential. The near field flow is described generally in Figure 4.69. The barrel shock and Mach disk shown

182



Figure 4.69: Schematic of a Flow Created by a Sonic Orifice

have been studied extensively and reasonably accurate empirical formulas exist to describe the location and

diameter of the Mach disk based on the pressure ratio used to drive the jet and the diameter of the sonic

orifice.[37, 100, 221, 228, 283]

This case was studied for four reasons. First, reports have indicated that plasma may weaken shock

structures and this case provided an excellent method to test that hypothesis. If the shock was weakened

by the plasma, the shock location should change. Next, while examining this theory, it was determined that

the plasma visibly interacted with the barrel shock because the shock structure was clearly illuminated in

the presence of the plasma. Thirdly, the sudden decrease in jet velocity in the transition through the Mach

disk provided an extreme example for investigating seed particle tracking errors. Finally, the region near

the Mach disk is a location with good illumination and temperature predictions which provides validation of

rotational temperature measurements taken by spectroscopy, reported in the next section.[193, 219, 229, 251]

The conditions which created this underexpanded jet are listed in Table 4.23. The pressure ratio was

chosen to be the lowest possible to create the barrel shock structure from the sonic orifice created by an

upstream lip forming a 60◦ angle. Lower pressure ratios produce smaller Mach Disks closer to the jet exit

and significantly more difficult to reach with particle image velocimetry due to the inset of the jet exit 3.2

mm from the anode face. Higher pressure ratios accelerated the flow to more than 700 m/s, which left the

seed particles with more latency and was unnecessary.[8]

The highly underexpanded jet, created by flow exiting a sonic orifice was photographed in Figure 4.70.

The influence of plasma-on strong shocks was studied here. The barrel shock formed as the jet matched

pressure conditions is highlighted by plasma emission. Figure 4.71 documented the relative intensity of this
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Table 4.23: Plasma and Jet Configuration for the Highly Underexpanded Jet Created
by a Sonic Orifice with a Flat Anode

Mi Po Pe De Da G Pf Pr Vbias CT CL

[ND] [torr] [torr] [mm] [mm] [mm] [W] [W] [V] [%] [%]
U 2.8 76.0 8.00 8.2 15.7 68.0 92 0 8-28 19.1 45.9

Figure 4.70: Image of Visible Emission from the Plasma Field at 8 Torr for a Flat Anode Around a Flow
Created by a Sonic Orifice Which Generated a Visible Barrel Shock Wave

plasma field and indicates that for the plasma-on case, the normal shock location is 15.3 mm or 1.9± 0.1 jet

diameters downstream of the jet exit. The empirical model of Crist [100] (x/De =
√

Po/2.4Pe) places the

location of the Mach disk at 2.0 jet diameters. Therefore it is concluded that the effect of the plasma-on the

strong shocks of a highly underexpanded jet did not influence the location of the Mach disk.
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Figure 4.71: Relative Intensity of Visible Emission from the Plasma Field at 8 Torr for a Flat Anode Around
a Flow Created by a Sonic Orifice Which Generated a Visible Barrel Shock Wave
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4.4.6 Summary of Important Findings from Visible Light Emission Imagery

Here is a summary of the significant conclusions obtained by investigating the plasma fields by photography

of visible light emission.

• The intensity of visible light increased in intensity and stretched further from the cathode towards the

anode across the electrode gap for increasing jet pressure ratios. The increased emission intensity and

plasma volume, coupled with comparable increases in forward power and bias voltage all indicated

stronger plasma fields with increasing jet Mach number.

• Increases in visible light emission were measured with a decrease in chamber pressure. Large increases

occurred in the anode and cathode glow regions, however the glow regions provide little influence to the

jet flow field. An increase in the center of electrode gap of 11% was found in the comparison between

a chamber pressure of 8 torr with a decrease to 5 torr. This increase indicated a stronger plasma field

existed at the lower chamber pressure.

• The modified anode design with the serrated conical feature enhanced the performance of the plasma

field in the electrode gap, bringing more plasma volume toward the anode, as measured by light

emissions. The modified anode was noted as slightly less stable which required slightly lower forward

power settings.

• The location of the Mach disk of a highly underexpanded jet appeared to be unaffected by an RF

capacitively-coupled plasma field. The plasma field provided a good technique for flow visualization of

the strong shock structure of the barrel shock.
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4.5 Temperature Measurement with Spectroscopy of the Second

Positive System of Diatomic Nitrogen

Spectroscopy is a non-intrusive diagnostic in which light emitted by the plasma field was captured and

analyzed. The light was separated by frequency and then recorded on an intensified CCD. Focusing on

a narrow bandwidth of light between 364 and 384 nm, the emission of stimulated diatomic Nitrogen was

observed. By matching the recorded spectra to a model of molecular Nitrogen emissions, the rotational and

vibrational temperatures were determined. The rotational temperatures are considered an accurate method

of measuring gas temperature in most cases, as the conversion of rotational and vibrational energy between

molecules occurs very quickly. This rapid conversion means that rotational and vibrational temperatures are

usually in equilibrium. From the rotational and vibrational temperatures of the test gas, taken across the

electrode gap, the plasma field effects on the jet are quantified here. These temperatures aid in explaining

the measured effects on mean and turbulent velocity fluctuations reported earlier in this section.[80, 113,

125, 131, 172, 250]

This section will detail each of the spectroscopy measurements made of the plasma fields. In all cases,

spectra were obtained along a vertical line oriented across the radial direction of the jet. Baseline spectroscopy

measurements for all plasma fields were made about 10 mm in front of the cathode face - a point far from

the jet exit and just in front of the cathode glow region. Some distance was required from the cathode to

avoid the plasma created at the cathode face, the so-called cathode glow. Since the cathode surface was so

far from the jet core, its glow region did not influence the jet and light emitted from the glow would saturate

the signal received, overpowering the light emitted from the shear layer of the jet.[145, 308]

Spectra were collected in a vertical line ranging from -24 mm to +27 mm from the jet centerline. The

spectrometer could be traversed in the streamwise direction in 20 mm increments from the baseline location

10 mm in front of the cathode face. This obtained rotational and vibrational temperatures along the vertical

line at multiple streamwise locations. In some cases a full plane of data was assembled across the entire

electrode gap. In other cases, emission intensity decreased to the point it was impractical to continue and

therefore the measurement was truncated.

Figure 4.72 is a schematic showing the collection plane for spectroscopy date. It should be noted that

spectroscopy is a line of site technique, collecting emissions through the entire plasma volume. However,

the focusing of the light on the entrance slit to the spectrometer acts like a field stop and heavily biases

the measurements toward the focal plane along the jet centerline. Also, note that the spectroscopy data

was imaged in a plane perpendicular to the PIV data. And while the jet and plasma field are relatively
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Figure 4.72: Schematic Showing the Imaging Focal Planes for Spectroscopy Orthogonal to the PIV, MTV
and Visible Imagery Plane

axisymmetric, slight differences between the two planes were noticed while acquiring the data. For example,

it was noted that the cathode leaned forward slightly due to a bending moment placed on it from the

electrical connection. This caused the top of the cathode to be slightly closer to the anode than the bottom.

Visibly, more light was observed on the top-half of the plasma field due to the closer gap distance there.

However, as the data will show in this section, the temperature differences between top and bottom are

relatively small. This same asymmetry appears in the visible emissions captured in the horizontal plane, as

reported in Section 4.4. Under vacuum, the jet would flex slightly in its frame and would bring one side of

the anode closer to the cathode than the other side. The result was increased visible emission on one side of

the jet. However, the PIV data showed symmetry in mean and turbulent measurements in the same plane.

Therefore, by analogy it is believed that these differences are relatively small and provide little influence to

the results.[145]

The first field to be examined is the highly underexpanded jet used in the particle tracking study. The

barrel shock is illuminated by the plasma field and provides some interesting insights of a known flow field

aiding in the interpretation of the results that follow. The next fields to be examined are the 8-9 torr

plasmas created with the flat anode for increasing pressure ratios (cases A, B and C). Then, to ascertain
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the influence of the anode modified with serrated conical feature, the modified anode field will be presented

for comparison with the baseline field (case B’). Next, the 5 torr plasmas with the modified anode will be

examined for increasing pressure ratios (cases F’, G’ and H’).

The 5 torr plasma fields were mapped with PIV by using two gap spacings. In order to map the velocity

field near the anode, the gap space was reduced by 30%, in order to bring the flow into the field of view

of the PIV system. To determine the change in plasma field for this decreased gap space, a comparison is

made. Then, the plasma field is examined for differences between cases C and D - where a pressure ratio

was changed to produce an overexpanded jet from the baseline Mach 2.0 nozzle. Finally, the 10 torr plasma

spectroscopy measurements are documented to provide some direction for future experiments.

4.5.1 Spectroscopy of the Highly Underexpanded Jet at 8 Torr
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Figure 4.73: Rotational and Vibrational Temperature of Flow Exiting from a Sonic Orifice from Spectra of
Diatomic Nitrogen, Along the Centerline of the Jet

Figure 4.73 shows the rotational (Tr) and vibrational (Tv) temperatures measured by line spectroscopy of

the emissions captured from the second positive system of diatomic Nitrogen. In this case, only the reading

taken near the centerline of the jet is presented along the gap space between the cathode and electrode.

The barrel shock is marked by the sharp decrease in rotational temperature at gap locations below x/G of

0.2, where G is the gap distance of 68.0 mm. Just prior to the Mach disk, the jet flow accelerates to over

600 m/s when measured by molecular tagging velocimetry (MTV). At 1.2 jet diameters from the nozzle
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Table 4.24: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Highly Underexpanded Jet at 8 Torr

Tr [K] r/D
x/D -3.0 -2.2 -1.4 -0.6 0.2 1.0 1.8 2.6 3.4
1.0 299 388 292 168 157 382 454 432 368
1.6 257 384 283 173 148 387 449 349 351

Normal Shock
2.2 307 384 279 424 456 372 368 434 368
4.6 304 387 334 417 437 368 364 429 368
7.1 405 426 307 396 405 332 394 410 345

Tv [K] r/D
x/D -3.0 -2.2 -1.4 -0.6 0.2 1.0 1.8 2.6 3.4
1.0 3126 3176 3313 3660 3756 3573 3296 3192 3059
1.6 2986 3056 3189 3595 3626 3447 3193 3100 2935
2.2 2986 2999 3144 3268 3464 3386 3190 3015 2911
4.6 2958 2979 3108 3213 3425 3337 3164 3016 2972
7.1 3065 3227 3405 3532 3669 3644 3368 3133 3145

Note: Jet Exit Diameter D is 8.2 mm and Gap Distance G is 68.0 mm.

exit, MTV data indicated a centerline flow speed of 590 m/s. For an assumed isentropic flow, based on the

measured plenum temperature of 293 K - the predicted static temperature is 125K for a flow speed of 590

m/s. The measured rotational temperature is 148 K 1.2 jet diameters from the exit of the jet, which is

consistent with the predicted uncertainty of ±25K. A prediction of static temperature downstream of the

Mach disk from normal shock relations estimates the rotational temperature downstream of the shock to be

286 K. A measurement of 440 K indicates that the plasma emission captured is in the heated shear layer and

not the core of the jet. The jet core was visible in the plasma field as a dark region, where it was difficult

to ascertain if the plasma illuminated into the jet core. Panel (b) shows Tv near 3,500 K which increases

approaching the electrodes from the center of the gap. In the barrel shock region, energy appears to be

trapped in the vibrational state of molecular Nitrogen, marked by the increase in vibrational temperature

there. This increase in Tv is consistent with frozen flow which is associated with quickly expanding supersonic

jets.[100, 14, 283]

Table 4.24 shows the rotational and vibrational temperatures measured in a grid across the electrode

gap, G. The top portion of the table is devoted to rotational temperature, Tr, while the bottom section

reports Tv, vibrational temperature. The position from left to right corresponds to jet diameters of vertical

displacement from the centerline of the jet. The radial positions are negative for the positions measured

vertically below the centerline and positive above the jet center. Each row in the table corresponds to a

different location along the gap, beginning near the anode face and progressing downstream towards the

cathode. The distance from the electrode (x/D) for each row of temperature measurements is the far left

hand column.
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In order to clear up confusion, jet exit diameter is used as much as possible to give physical meaning

relative to comparable experiments involving axisymmetric jets. However, when different plasma fields are

compared the critical parameter is the spacing of the electrode gap. Therefore all of the plots in this section

are scaled by the gap distance for consistency and to aid in plasma field comparisons, but this table is scaled

by jet exit diameter for use in comparison with other experiments.[100, 145, 221]

With regards to rotational temperature, three trends can be observed in Table 4.24. First, the location

of the barrel shock is marked by low rotational temperatures at x/D locations of 1.0 and 1.6 and at r/D

positions nearest the centerline (-0.6 and 0.2, respectively). Next, the rotational temperature downstream

of the shock is significantly higher and reflects the light being emitted primarily from the shear layer, as

the core of the jet is observed to be visibly darker. Therefore, from observations of the light emitted in

the visible spectrum, it is assumed that light emitted in the near UV range is also decreased in the jet

core, meaning the spectroscopy measurements made are based on the information received from the plasma

regions emitting light. In Table 4.24, the rotational temperature peaks at the center of the jet, and then

drops for the measurements taken about one exit diameter from the centerline radially. Further outboard of

the jet centerline, Tr rises again at the furthest outboard radial stations. It is believed that the centerline

peak corresponds to measurements of the visibly brightest portions of the plasma field in the shear layer.

Menart et. al. [251] made a similar observation of plasma strength growing in the shear layer region. The

centerline measurements capture emissions from the shear layer closest to the spectrometer. The rise in

rotational temperature at the outboard stations corresponds to a decrease in vibrational temperature at the

same location and is attributed to a quenching of the vibrational temperature through collisional energy

transfers in the shear layer. There is a region of decreased rotational temperature between the centerline

and the outboard stations. The temperature here is attributed to the cool core gas of the jet, mixing with

the excited gas in the plasma field and thereby lowering the temperature.[145, 308]

No trend is observed in rotational temperature as the flow travels from anode to cathode. The only

conclusion that can be drawn is that the rotational gas temperature in the shear layer appears to be about

400 K but is lower in the core mixing region, and also near the edge of the plasma field. There are some hot

spots observed near the anode and cathode and these are believed to be from the anode and cathode glow

regions, respectively.[131, 145, 308]

Two trends are observed in the vibrational temperatures of this plasma field. First, the the vibrational

temperatures are about 10% higher near the cathode and the anode than in the center of the gap. Secondly,

the vibrational temperatures are highest along the centerline of the jet and decrease radially outward from

the center. This corresponds to the centerline of the plasma field as well. The vibrational temperatures
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suggest a symmetry of the plasma field. Higher vibrational temperatures are expected near the electrodes

as the gas is exposed to stronger excitation from the electrode glow regions. Higher vibrational energy along

the centerline tracks with previously mentioned expectations as well. The vibrational energy is somewhat

trapped, but achieves balance by radiation, convection and diffusion to the chamber walls - therefore as the

plasma reaches outward from the electrodes towards the plasma walls, the vibrational energy tapers off and

manifests itself as lower measured vibrational temperatures, and subsequently higher measured rotational

temperatures.[145]

4.5.2 Effect of Compressibility on Plasma Field Temperatures for Perfectly

Expanded Jets

r/G [ND]

T
r

[K
]

-0.4 -0.2 0 0.2 0.4
200

300

400

500

600

Mach 0.6

Mach 1.1

Mach 2.0

(a) Rotational Temperature, Tr

r/G [ND]

T
v

[K
]

-0.4 -0.2 0 0.2 0.4
2500

3000

3500

4000

Mach 0.6

Mach 1.1

Mach 2.0

(b) Vibrational Temperature, Tv

Figure 4.74: Summary of Temperature Comparisons for Increasing Mach Numbers from Spectra of Diatomic
Nitrogen for Axisymmetric Jets at 8-9 Torr, Taken 10 mm Away from the Cathode

Figure 4.74 is a compilation of temperature measurements for increasing pressure ratios to examine the

effects of compressibility on the plasma field temperatures. Each of the lines represent a measurement taken

10 mm upstream of the cathode, the point furthest from the jet exit and are points which extend outward

from the centerline of the jet. Three pressure ratios are examined, all with matched converging-diverging

nozzles and are for Mach numbers of 0.7, 1.1 and 2.0. The rotational temperature measurements show similar

trends as found in the underexpanded jet measured previously. Namely, the rotational temperature peaks

along the centerline and decreases in the region where visibility occurs through the outer plasma region into
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the shear-core interaction. The temperature peaks again along the edge and matches the corresponding

decrease in vibrational temperature - again suggesting a vibrational quenching.[308]

Vibrationally, the plasma field looks very similar to the previous example of the underexpanded jet.

The vibrational temperature increases toward the center of the jet, and decreases radially outward. The

only influence of compressibility can be seen here as well. The Mach 0.7 case shows a 100 K decrease in

vibrational temperature when compared to the Mach 1.1 and 2.0 cases. This tracks with the trend observed

in the visible emission spectrum where the subsonic plasma fields were notably weaker than the supersonic

cases both in terms of light emitted and in power transmitted. Note however that a change of 100 K is

within the uncertainty bounds for this measurement technique.[145, 251]

4.5.3 Effect of Anode Design on Plasma Field Temperatures

x/G [ND]

T
r

[K
]

0 0.2 0.4 0.6 0.8 1
300

400

500

600

700

Flat Anode

Anode with Serrated Conical Feature

(a) Rotational Temperature, Tr

x/G [ND]

T
v

[K
]

0 0.2 0.4 0.6 0.8 1
3000

3500

4000

4500

Flat Anode

Anode with Serrated Conical Feature

(b) Vibrational Temperature, Tv

Figure 4.75: Temperature Comparisons Between Anode Designs from Spectra of Diatomic Nitrogen for a
Mach 1.1 Axisymmetric Jet at 9 Torr, Along the Centerline of the Jet

Here is the investigation into the difference in plasma field based on anode design. Figure 4.75 compares

the Mach 1.1 axisymmetric jet at 9 torr for two anodes. The first anode was the baseline flat anode. The new

anode was based on the flat anode design, but modified with a serrated conical tip at the exit of the jet. The

modified anode was chosen to create weak corona discharges to modify the plasma field and bring stronger

intensity plasma towards the exit of the jet. To compare the influence of anode design, the rotational and

vibrational temperatures are shown along the centerline of the jet between the electrodes. Rotational and
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vibrational temperatures show the same trends. First, Tr and Tv are markedly higher in the center of the

electrode gap for the modified anode. Also of interest is the sharp decline in both rotational and vibrational

temperatures at the anode face. This measurement was made made intentionally near the corona discharge

of the conical tip, which extends 7% into the electrode gap. Therefore it is believed that the anode dark space

contributes most to this reading and to the low temperatures measured. It is concluded that the modified

anode does improve the plasma field. The flat anodes were used for all of the 8-9 torr plasma fields due to

the larger jet exit diameters and potential for plasma instabilities at higher pressures. Only one modified

anode existed, it was used consistently for all of the 5 torr plasma fields. One of the 9 torr nozzles had an

exit diameter which was at or larger than the exit of the modified anode. For consistencies sake, all three

nozzles were matched to flat anodes for that sequence of testing. [145, 308]

4.5.4 Effect of Compressibility on Plasma Field Temperatures for Developing

Pipe Flow Jets
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Figure 4.76: Summary of Temperature Comparisons for Increasing Mach Numbers from Spectra of Diatomic
Nitrogen for Developing Flow Exiting from a Constant-Diameter Pipe at 5 Torr, Taken 10 mm Away from
the Cathode

Examined in Figure 4.76 are the plasma fields generated around a constant-diameter tube. The variation

of compressibility is investigated by increasing the pressure ratio applied across the nozzle. Supersonic

exit conditions are achieved with the constant-diameter pipe through an aerodynamic throat caused by

a separation at the tube entrance. Looking at the rotational temperatures in panel (a), the peak at the
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centerline is seen here, as was noted earlier. Also, the decrease in Tr seen previously is apparent here as

well at r/G of 0.1, which is attributed to the mixing of the cold jet with the warm shear layer and results

in a decrease in temperature from the shear layer measurement from light emitted just outboard of the

centerline. Note here that there is a difference between the positive radial positions and the negative radial

positions. The rotational temperature is higher on the positive side. In these cases there was a difference in

gap spacing between the top of the cathode and the bottom of the cathode of about 1 mm. The top side was

closer to the anode and the plasma field was observed to be brighter on the top side in the visible spectrum.

Therefore since the plasma field is believed to be stronger there, the rotational asymmetry is attributed to

the slight lean of the cathode and corresponding shift in the plasma field.[130]

Vibrational temperatures, show a continuing trend of peaking in the center and decreasing toward the

radial edges. The decrease in Tv again tracks with an increased Tr and is believed to be a combination

of energy transfer to rotational and translational temperatures, as well as radiation and diffusion to the

chamber walls. Note that in both rotational and vibrational temperatures, no significant change is observed

for the variation of pressure ratios. This is a change from the plasmas at higher pressures, where the subsonic

case showed slightly lower vibrational temperatures. The trend in subsonic plasma being weaker in terms of

visible light emitted and in power transmitted is noted - but does not translate into a reduced vibrational

temperature.

4.5.5 Summary of Important Findings from Temperature Measurement by

Spectroscopy

It was postulated previously that the reason for the increase in convective velocity with the plasma on can be

attributed entirely to the increase in gas temperature in the shear layer as a result heating by the plasma field.

The compressible convective velocity, Uc can be related to the temperature of the jet and of the chamber

through Uc = (a2U1 + a1U2)/(a1 + a2) - where U1 is the core velocity of the jet and U2 is zero for these

jets. To quantify the T2 required to produce the measured change in convective velocity, the equation above

can be manipulated into the more convenient form found in Equation 4.14. The resulting (T2−plasma) is the

shear layer temperature required to bring about the measured change in convective velocities Uc−plasma/Uc.

The plasma-off shear layer temperature is assumed to be near the measured plenum temperature, which is

averaged to be 294 K. This calculation was performed based on the measured core and convective velocities

to compare to measured the rotational gas temperatures in the shear layer. The convective velocity analysis

indicated that shear layer temperatures between 315 K and 378 K would produce the measured change in

convective velocity. The measured rotational temperatures in the area believed to be emissions from the
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shear layer do indicate that those temperatures are between 326 and 372 K. Therefore, given the overlap

of measured shear layer temperatures and the estimate of required shear layer temperatures, the change

in convective velocity due to an increased speed of sound associated with the increased temperature of the

shear layer from the plasma field is most plausible.
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Chapter 5

Conclusions

5.1 Test Objectives

This research set out generally to find the influence of plasma on compressible turbulence. Compressible

turbulence in plasma touches many fields of interest. Vehicles such as the space shuttle experience the

combined effects of plasma and compressible turbulence on re-entry into the earth’s atmosphere. As we

learned in the space race of the 1960s, the stresses placed on a re-entry vehicle during the return to earth are

severe and miscalculations carry devastating consequences. Plasmas are being used also in space applications,

such as hall-effect thrusters on orbiting satellites. In order to achieve an understanding of the underlying

features of plasmas and to predict the impact of those features on future designs, modeling is required.

And therein lies the strongest influence for this research - that this work provides data which will validate

modeling of this rather complicated juncture of interwoven phenomena.

The main goal of the research presented here was to determine the differences between a plasma field and

neutral field flow structure (both mean and turbulent effects) for varying Mach number. The overall objective

was to describe the effect of Radio Frequency Capacitively Coupled Plasma (RF-CCP) on the flow features

of compressible axisymmetric jets. This objective was examined through three specific sub-objectives.

• Confirm the Measurement Technique Accurately Describes the Flow Field

• Define a Measure for Plasma Quality

• Measure the Effect of Plasma on the Flow Field

The first sub-objective was to confirm the measurement technique accurately describes the flow field.

Research indicates that atomized liquid seed particles were small enough to accurately track the flow dy-

namics of these nozzles. However, the accuracy of the particle tracking must be quantified. Measurements

taken with seed particle based tracking techniques were compared to molecular tracer techniques to confirm

the particles accurately tracked the flow. Good theoretical models exist which were used for comparison.

One aspect of this sub-objective was the concern that the plasma may induce motion in the seed particles.
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However, through observation prior to testing, the seed particles in these experiments were noted not to be

disturbed electrically or thermophoretically by the plasma field. This sub objective was considered successful

when two conditions were met. First, particles based velocity measurements tracked the mean flow features

to within 5% of the molecular tracer based velocimetry technique. Second, the model based approach to

estimating uncertainty in turbulent fluctuations determined that uncertainty was below 10%.

The next sub-objective was to define a measure for plasma quality. The goal of this sub objective was

to quantify a factor which can be measured independent of the flow structure to determine the influence of

the plasma on the flow structure. Success in this category was based on documenting plasma quality for all

plasma fields tested.

Measuring the effect of plasma on the flow field was the final sub-objective. This sub-objective was the

primary path to answering the test objective. Both mean and turbulent fluctuating velocity fields were

acquired for plasma and neutral fields at the same test conditions and flow locations. Success here was in

acquiring these sets at at least two different Mach numbers for: a free shear flow, the same free shear flow

with an induced large scale structure, and an oblique shock structure.

This document began with a review of axisymmetric jet flow structures. Next, to gain a better un-

derstanding of plasmas, the mechanics of the fourth state of matter and the techniques used in generating

sustained plasma in the laboratory were reported. The plasma fields described there were important because

many of them were encountered in testing, and phenomena encountered in one type of plasma field are often

used to describe features of other plasmas.

Then, the equipment used and developed for this research effort were described. First the facilities which

deliver high pressure air and evacuate the test chamber were detailed. Next, the test section was described.

The nozzle design procedure was then reported along with descriptions of all the nozzle contours as an aid

to modeling with computational fluid dynamics. Next, the equipment used to generate seed particles was

over-viewed. Finally, the plasma generation system is detailed, along with tuning philosophy and electrode

design methodology.

The non-intrusive diagnostics described next were used in determining the flow properties of interest

in this research effort. Each of the diagnostics was based on the measurement of light. The measurement

techniques used, the test procedures and the measurement uncertainties were reported for each diagnostic.

Finally, the measurements conducted to characterize the plasma and its effect on the mean and turbulence

quantities of the jet were documented. The results were divided into the specific test techniques used to

investigate the jet flow fields. First, verification results were reported to investigate how well the seed particles

track the flow. Then, with adequate tracking characterized, particle based velocimetry techniques were used
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for the quantitative measurement effort. The bulk of the results then focused on the velocimetry data,

examining the effect plasma had on mean and turbulent measurements of the velocity field for various jet

conditions. Four different axisymmetric jets and their resulting shear layers were investigated to determine

the influence of a plasma field on them: perfectly expanded subsonic and supersonic jets, jets created by

developing pipe flow exhausting from a constant-diameter tube, and large scale structures created by forced

laser energy deposition into jet flows. The plasma field was documented next by examining the intensity of

light emitted in the visible spectrum. Finally, the plasma field was defined quantitatively by examining the

rotational and vibrational temperatures of diatomic nitrogen through spectroscopy of the emission of near

ultraviolet light from second positive system of diatomic nitrogen.

5.2 Findings

Characterizing the ability of particles to adequately track the mean and turbulent velocities was accomplished

first, in order that tested could proceed with confidence in the measurements. It was found near the exit (1.1

diameters downstream of the anode), the effects of particle latency on mean flow determination resulted in

up to a 5% error in PIV measurements of centerline axial velocity for the 100 nm seed particles. In general,

the 100 nm seed particles showed excellent tracking ability of the mean flow of the jet, which was expected

to improve as the flow gradients shallow and the jet core is dissolved. Mean flow tracking was not acceptable

in the presence of strong shocks. Flow test conditions under evaluation in the remainder of this effort

minimized the effect of shocks through pressure matching jet conditions and focusing on flow features much

further downstream then the expected location of shock structures. Then using a model based approach, the

effect of particle latency on turbulence measurements of axial and tangential velocity produced a propagated

uncertainty of between 2.3% and 2.6% using sample sizes of 4000 velocity vectors. Additionally, particle

tracking was found to have negligible effect on determining shear layer thickness. Measurement comparisons

were made and found errors of between 1% and 3% 1.1 diameters downstream of the anode face. Further

downstream it was reasoned that this measurement error should decrease as particle tracking improves in

the growing shear layer.

Particle Image Velocimetry (PIV) was used to quantify the mean and turbulent velocities of three per-

fectly expanded jets. A comparison was made three jet diameters downstream of the anode face. At this

location, the centerline velocity is 96% of the measured exit velocity, indicating that core breakdown has

not yet occurred and therefore the velocity is unaffected by the plasma field. However, in all three cases,

the centerline Turbulent Kinetic Energy (TKE) decreases when the plasma is initiated. At this axial loca-
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tion in the jet flow, centerline turbulent kinetic energy decreases if the core is allowed to penetrate further

downstream. Given the uncertainty of this measurement is 6.7%, there is no trend versus Mach number -

only a consistent decrease in centerline TKE for all cases. Therefore it is concluded that the plasma effect

on perfectly expanded jets is not dependent upon Mach number in the developing jet, but that overall the

plasma allows the jet core to penetrate further downstream. It is believed that this penetration is an effect

a bias of convective velocity to higher values towards the jet core velocity - due to heating of the shear layer

by the plasma field.

Next, PIV was used to examine the influence plasma for increasing equivalent Mach number on mean

and turbulent fluctuations for developing pipe flow jets. In general, the jet created by the constant-diameter

nozzle was effective in increasing turbulence intensities in the core of the jet which translated into higher

turbulent kinetic energy further downstream. A comparison was made between all three equivalent Mach

numbers at a station 11.4 diameters downstream of the jet anode. The equivalent Mach 0.9 jet was influenced

by the plasma considerably, especially given the relative weakness of the plasma field. The plasma-on case

had a centerline velocity which was 8% higher than the plasma-off case at 11.4 diameters from the anode

face. The TKE was 28 to 36% lower for the plasma-on case when compared to the plasma-off case at this

location. The turbulent kinetic energy was 28 to 36% lower for the plasma-on case when compared to the

plasma-off case at this location. For the high-speed, equivalent Mach 1.9 case, the axial velocity profiles

looked the same, but turbulent kinetic energy increased 11% on the centerline and 14% in the shear layer

when the plasma was initiated. This case exhibited shock and expansion phenomena in the jet core region

from pressure mismatches in the tube nozzle.

There was a trend present in scaled turbulent kinetic energy with increasing effective Mach number for

the progression of the jet from the anode face downstream. Initially, the Mi = 0.9 jet saw a reduction

in TKE as the flow progresses downstream. At an effective Mach number of 1.4, the trend stagnated and

then began to reverse. At Mi = 1.9 the effect was reversed, with plasma beginning to increase TKE as

the flow travels downstream. Reynolds number effects were investigated, by computing a local Reynolds

number, based on the jet diameter, local centerline velocity Uo, an estimate for density based on chamber

pressure and estimated jet temperature T1, and viscosity based on measured shear layer temperatures from

spectroscopy (presented later in this chapter). The Reynolds number calculations showed a general decrease

of 8 to 16% with plasma-on and did not match any trends of TKE progression. Therefore, it was concluded

that the trend in turbulence was for an initial decrease, switching to an increase in TKE as the effective

Mach number progresses from subsonic to supersonic values. The developing pipe flow which generated

this flow was a complicated jet structure with many rich features for the plasma field to interact with.
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The supersonic flow began smoothly, but then developed a pattern of reflected shocks and expansions from

observation of the velocity fluctuations in the centerline velocity near the jet exit. It was possible that the

plasma field was interacting with the shock structures in the jet. Weakened shocks would allow for increased

jet turbulence through higher core velocities passing downstream. Evidence of the higher core velocities was

absent from these measurements, however the increase in TKE for the Mi = 1.9 jet could be a precursor to

higher plasma-on core velocities further downstream.

The next comparison was of an off-nominal case, where the baseline flow is a converging-diverging jet

at Mach 2.0. The influence of plasma on a weakly overexpanded jet was then investigated. The baseline

Mach 2.0 nozzle was driven at a pressure ratio equivalent to a Mach number of 1.9 . When compared to

the baseline nominal case, the influence of the plasma field is more pronounced on the overexpanded jet.

In the overexpanded case, the axial velocity along the centerline increases 11 m/s for a 2.4% change in

the plasma-on case over the plasma-off condition. For the nominal jet, the increase was 5 m/s or a 1%

change. TKE decreases 31% along the centerline and 5% in the shear layer for the overexpanded plasma-on

condition compared to plasma-off. For the nominal Mach 2.0 jet, the corresponding centerline decrease was

14% with no detectable change in the shear layer. From these changes in velocity measurements for the

slightly overexpanded condition, it was concluded that the plasma field may have an impact on weak shocks.

It has been hypothesized that a plasma field may interact with the shock waves to weaken them thermally,

resulting in a higher downstream fluid velocity in the presence of a plasma. Conversely, the convective Mach

number was lower in the overexpanded case, when compared to the Mach 2.0 nominal case and that may be

another driver for the change noticed here. In either case, the effect of the plasma-on was more pronounced

in the overexpanded jet than in the perfectly expanded jet.

The final comparison in PIV measurements was to examine the effect of anode design on the plasma

field and the resulting impact on mean velocity and velocity fluctuations. The mean flow and turbulent

kinetic energy did not change when comparing the plasma-off flow with the flat anode to the plasma-off

flow with the modified anode. Therefore it was concluded that the presence of the modified anode had

no significant impact on the measurements being taken. In comparing plasma-on cases between the anode

designs, the mean centerline velocity was unchanged. Turbulent kinetic energy increased on the centerline

by 2% for the flat anode, and by 3% for the modified anode. In the shear layer, the increases were 3% and

8% respectively. From these measurements it was concluded that the modified anode design improved the

influence of the plasma field on turbulent structure, but did not significantly impact on the mean flow in

this case. The modified anode was not recommended for use at higher chamber pressures as arcs form easily

in the non-linear electric field created near the serrated cone.
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It is postulated here that the reason for the increase in convective velocity with the plasma-on can be

attributed entirely to the increase in gas temperature in the shear layer as a result heating by the plasma

field. An increase in the the chamber temperature surrounding the jet, T2 from 300 K to 400 K would result

in an increase in convective velocity of 7% for all the cases examined. In an effort to quantify the T2 required

to produce the measured change in convective velocity, an estimated shear layer temperature needed to make

the measured change in convective velocity was calculated. Shear layer temperatures between 315 K and

378 K would produce the measured change in convective velocity. The measured rotational temperatures in

the area believed to be emissions from the shear layer do indicate that those temperatures are between 326

and 372 K. Therefore, given the overlap of measured shear layer temperatures and the estimate of required

shear layer temperatures, the change in convective velocity due to an increased speed of sound associated

with the increased temperature of the shear layer from the plasma field was the most plausible explanation.

5.3 Recommendations

This field has many avenues for further research. Here are some of the author’s ideas to answer the question

‘where do we go from here?’ It is hoped that the experiments performed will be both an encouragement and

a challenge to continue research in this area.

• Employ numerical modeling of the perfectly expanded jet in a simulated plasma field, where the plasma

is approximated as heat addition in the shear layer of the jet to investigate if heating is the only source

of change

• Employ numerical modeling of the developing pipe flow jet in a simulated plasma field, where the

plasma is approximated as heat addition in the shear layer of the jet to investigate if heating is the

only source of change

• Construct a larger test section which will allow for investigations of the jet flow after it has traveled

through the plasma field to investigate whether the plasm influence on the jet is diminished upon

exiting the plasma field.

• Use other plasma generation schemes to investigate if the effects observed here are related only to

radio-frequency capacitively coupled plasmas or if their are universal effects.

• Construct other nozzles which further increase the core turbulence to investigate the plasma influence

on these jet structures.

202



• Construct an impinging nozzle with variable impingement angle in the flow field to further quantify

the effect of plasma fields on strong and weak shocks. This could be a precursor to using this plasma

field to simulate re-entry conditions.
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Appendix A

Archival of Particle Image
Velocimetry Statistical Data

This Appendix contains a compilation of statistical data taken by particle image velocimetry (PIV). Each

of the data presented here are the result of statistical analysis of over 4000 two dimensional velocity vectors.

The vectors analyzed are from the combination of four rows of PIV data which were separated by less than

1 mm (less than one-tenth of a jet diameter in all cases). Each of the PIV data sets are a vector field of

either 1032 or 1150 image pairs. Two to three overlapping PIV regions were measured and processed. Lines

were investigated at roughly 20 mm intervals across the electrode gap, starting at the exit of the jet (anode)

and progressing towards the cathode. Each of those lines are presented as a series of ten figures, covering

three pages. The first three sequences cover the converging-diverging jets at 9 and 8 torr in increasing Mach

numbers. Next, the overexpanded case where the Mach 2.0 jet was run with a pressure ratio of mach 1.9 is

presented. Then the Mach 1.4 converging-diverging jet at 5 torr is detailed. The next three sequences cover

a series of runs using the developing flow exiting from a nozzle formed from a constant diameter tube in

order of increasing pressure ratios with subsonic and supersonic conditions achieved. The final sequence is

a modification to the Mach 1.1, 9 torr case to investigate the effects of a modified anode. The normal flat

faced anode cap was replaced with one with a serrated conical feature protruding from it. For reference,

Table A.1 lists the case identifier, followed by downstream location in jet diameters, the Mach number based

on measured centerline velocity and plenum temperature, and the beginning figure number and page for

that sequence.
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Table A.1: Test Conditions Reference

Case x/De M1 Beginning Figure
A 0.5 0.69 A.1 on the next page

1.5 0.68 A.4 on page 209
2.3 0.66 A.7 on page 212
3.2 0.65 A.10 on page 215

B 0.7 1.13 A.13 on page 218
1.9 1.11 A.16 on page 221
3.2 1.10 A.19 on page 224
4.5 1.05 A.22 on page 227

C 0.9 2.04 A.25 on page 230
2.7 2.02 A.28 on page 233
4.4 2.05 A.31 on page 236
6.2 1.93 A.34 on page 239

D 0.9 1.96 A.37 on page 242
2.7 1.94 A.40 on page 245
4.4 1.92 A.43 on page 248
6.2 1.74 A.46 on page 251

E’ 2.3 1.37 A.49 on page 254
3.4 1.37 A.52 on page 257
5.0 1.36 A.55 on page 260
7.1 1.35 A.58 on page 263
9.2 1.10 A.61 on page 266

11.3 0.79 A.64 on page 269
F’ 2.4 0.75 A.67 on page 272

3.4 0.75 A.70 on page 275
5.1 0.73 A.73 on page 278
7.1 0.71 A.76 on page 281
9.2 0.62 A.79 on page 284

11.4 0.50 A.82 on page 287
G’ 2.3 1.29 A.85 on page 290

3.4 1.30 A.88 on page 293
5.0 1.26 A.91 on page 296
7.1 1.12 A.94 on page 299
9.3 0.92 A.97 on page 302

11.3 0.70 A.100 on page 305
H’ 2.3 1.65 A.103 on page 308

3.4 1.59 A.106 on page 311
5.0 1.54 A.109 on page 314
7.1 1.57 A.112 on page 317
9.3 1.29 A.115 on page 320

11.3 0.99 A.118 on page 323
B’ 0.7 1.13 A.121 on page 326

1.9 1.11 A.124 on page 329
3.2 1.10 A.127 on page 332
4.5 1.05 A.130 on page 335
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A.1 Mach 0.6 Converging-Diverging Nozzle at 9 Torr
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Figure A.1: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 613LINE1024

This is an investigation into the effect of plasma on a Mach 0.7 jet, 0.5 diameters from the anode face.

The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.1 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 229.3 m/s for the plasma off case and 228.4 m/s for the plasma on case. Figure A.1 (b) is the mean

tangential component of the velocity. Figures A.1 (c) and (d) show the Reynolds normal stresses in the axial

and tangential directions, respectively.
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Figure A.2: Comparison of Plasma Effects on Second Moment Fluctuations: Case 613LINE1024

This is a continuing investigation into the effect of plasma on a Mach 0.7 jet, 0.5 diameters from the anode

face. The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.2 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 229.3 m/s for the plasma off case and 228.4 m/s for

the plasma on case. Figures A.2 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 613cn-LINE1024 for

plasma off and 613pn-LINE1024 for plasma on.
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Figure A.3: Comparison of Plasma Effects on Skewness and Kurtosis: Case 613LINE1024

This is the final series of figures on the investigation into the effect of plasma on a Mach 0.7 jet, 0.5

diameters from the anode face. The jet diameter is 20.8 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.3 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

613cn-LINE1024 for plasma off and 613pn-LINE1024 for plasma on.
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Figure A.4: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 613LINE3024

This is an investigation into the effect of plasma on a Mach 0.7 jet, 1.5 diameters from the anode face.

The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.4 (a) is non-dimensionalized axial velocity. For these figures, Uo is 226.4

m/s for the plasma off case and 224.9 m/s for the plasma on case. Figure A.4 (b) is the mean tangential

component of the velocity. Figures A.4 (c) and (d) show the Reynolds normal stresses in the axial and

tangential directions, respectively. The case identifiers for this comparison were 613cn-LINE3024 for plasma

off and 613pn-LINE3024 for plasma on.
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Figure A.5: Comparison of Plasma Effects on Second Moment Fluctuations: Case 613LINE3024

This is a continuing investigation into the effect of plasma on a Mach 0.7 jet, 1.5 diameters from the anode

face. The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.5 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 226.4 m/s for the plasma off case and 224.9 m/s for

the plasma on case. Figures A.5 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 613cn-LINE3024 for

plasma off and 613pn-LINE3024 for plasma on.
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Figure A.6: Comparison of Plasma Effects on Skewness and Kurtosis: Case 613LINE3024

This is the final series of figures on the investigation into the effect of plasma on a Mach 0.7 jet, 1.5

diameters from the anode face. The jet diameter is 20.8 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.6 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

613cn-LINE3024 for plasma off and 613pn-LINE3024 for plasma on.
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Figure A.7: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 604LINE4673

This is an investigation into the effect of plasma on a Mach 0.7 jet, 2.3 diameters from the anode face.

The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.7 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 219.3 m/s for the plasma off case and 219.0 m/s for the plasma on case. Figure A.7 (b) is the mean

tangential component of the velocity. Figures A.7 (c) and (d) show the Reynolds normal stresses in the axial

and tangential directions, respectively. The case identifiers for this comparison were 604cnc-LINE4673 for

plasma off and 604pnc-LINE4673 for plasma on.
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Figure A.8: Comparison of Plasma Effects on Second Moment Fluctuations: Case 604LINE4673

This is a continuing investigation into the effect of plasma on a Mach 0.7 jet, 2.3 diameters from the anode

face. The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.8 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 219.3 m/s for the plasma off case and 219.0 m/s for

the plasma on case. Figures A.8 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 604cnc-LINE4673 for

plasma off and 604pnc-LINE4673 for plasma on.
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Figure A.9: Comparison of Plasma Effects on Skewness and Kurtosis: Case 604LINE4673

This is the final series of figures on the investigation into the effect of plasma on a Mach 0.7 jet, 2.3

diameters from the anode face. The jet diameter is 20.8 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.9 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

604cnc-LINE4673 for plasma off and 604pnc-LINE4673 for plasma on.
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Figure A.10: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 604LINE6655

This is an investigation into the effect of plasma on a Mach 0.7 jet, 3.2 diameters from the anode face.

The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.10 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 215.4 m/s for the plasma off case and 215.5 m/s for the plasma on case. Figure A.10 (b) is the mean

tangential component of the velocity. Figures A.10 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 604cnc-LINE6655

for plasma off and 604pnc-LINE6655 for plasma on.
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Figure A.11: Comparison of Plasma Effects on Second Moment Fluctuations: Case 604LINE6655

This is a continuing investigation into the effect of plasma on a Mach 0.7 jet, 3.2 diameters from the anode

face. The jet diameter is 20.8 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.11 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 215.4 m/s for the plasma off case and 215.5 m/s for

the plasma on case. Figures A.11 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 604cnc-LINE6655 for

plasma off and 604pnc-LINE6655 for plasma on.
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Figure A.12: Comparison of Plasma Effects on Skewness and Kurtosis: Case 604LINE6655

This is the final series of figures on the investigation into the effect of plasma on a Mach 0.7 jet, 3.2

diameters from the anode face. The jet diameter is 20.8 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.12 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

604cnc-LINE6655 for plasma off and 604pnc-LINE6655 for plasma on.
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Figure A.13: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 611LINE1051

This is an investigation into the effect of plasma on a Mach 1.1 jet, 0.7 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.13 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 350.1 m/s for the plasma off case and 350.2 m/s for the plasma on case. Figure A.13 (b) is the mean

tangential component of the velocity. Figures A.13 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively.
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Figure A.14: Comparison of Plasma Effects on Second Moment Fluctuations: Case 611LINE1051

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 0.7 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.14 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 350.1 m/s for the plasma off case and 350.2 m/s for

the plasma on case. Figures A.14 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 611cn-LINE1051 for

plasma off and 611pn-LINE1051 for plasma on.
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Figure A.15: Comparison of Plasma Effects on Skewness and Kurtosis: Case 611LINE1051

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 0.7

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.15 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

611cn-LINE1051 for plasma off and 611pn-LINE1051 for plasma on.

220



r/D [ND]

U
/U

[N
D

]

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Plasma On

Plasma Off

0

x/D= 1.9

(a) Mean Axial Velocity, U/Uo

r/D [ND]

V
/U

[N
D

]

-2 -1 0 1 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Plasma On

Plasma Off

0

x/D= 1.9

(b) Mean Tangential Velocity, V/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4
Plasma On

Plasma Off

0
σ u

x/D= 1.9

(c) Fluctuating Axial Velocity, σu/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.04

0.08

0.12

0.16

0.2
Plasma On

Plasma Off

0
σ v

x/D= 1.9

(d) Fluctuating Tangential Velocity, σv/Uo

Figure A.16: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 611LINE3051

This is an investigation into the effect of plasma on a Mach 1.1 jet, 1.9 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.16 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 343.9 m/s for the plasma off case and 344.9 m/s for the plasma on case. Figure A.16 (b) is the mean

tangential component of the velocity. Figures A.16 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 611cn-LINE3051

for plasma off and 611pn-LINE3051 for plasma on.
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Figure A.17: Comparison of Plasma Effects on Second Moment Fluctuations: Case 611LINE3051

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 1.9 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.17 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 343.9 m/s for the plasma off case and 344.9 m/s for

the plasma on case. Figures A.17 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 611cn-LINE3051 for

plasma off and 611pn-LINE3051 for plasma on.
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Figure A.18: Comparison of Plasma Effects on Skewness and Kurtosis: Case 611LINE3051

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 1.9

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.18 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

611cn-LINE3051 for plasma off and 611pn-LINE3051 for plasma on.
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Figure A.19: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 603LINE5011

This is an investigation into the effect of plasma on a Mach 1.1 jet, 3.2 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.19 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 341.5 m/s for the plasma off case and 341.5 m/s for the plasma on case. Figure A.19 (b) is the mean

tangential component of the velocity. Figures A.19 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 603cnc-LINE5011

for plasma off and 603pnc-LINE5011 for plasma on.
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Figure A.20: Comparison of Plasma Effects on Second Moment Fluctuations: Case 603LINE5011

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 3.2 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.20 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 341.5 m/s for the plasma off case and 341.5 m/s for

the plasma on case. Figures A.20 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 603cnc-LINE5011 for

plasma off and 603pnc-LINE5011 for plasma on.
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Figure A.21: Comparison of Plasma Effects on Skewness and Kurtosis: Case 603LINE5011

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 3.2

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.21 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

603cnc-LINE5011 for plasma off and 603pnc-LINE5011 for plasma on.
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Figure A.22: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 603LINE6993

This is an investigation into the effect of plasma on a Mach 1.1 jet, 4.5 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.22 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 330.4 m/s for the plasma off case and 328.9 m/s for the plasma on case. Figure A.22 (b) is the mean

tangential component of the velocity. Figures A.22 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 603cnc-LINE6993

for plasma off and 603pnc-LINE6993 for plasma on.
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Figure A.23: Comparison of Plasma Effects on Second Moment Fluctuations: Case 603LINE6993

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 4.5 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.23 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 330.4 m/s for the plasma off case and 328.9 m/s for

the plasma on case. Figures A.23 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 603cnc-LINE6993 for

plasma off and 603pnc-LINE6993 for plasma on.
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Figure A.24: Comparison of Plasma Effects on Skewness and Kurtosis: Case 603LINE6993

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 4.5

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.24 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

603cnc-LINE6993 for plasma off and 603pnc-LINE6993 for plasma on.
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Figure A.25: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 609LINE1012

This is an investigation into the effect of plasma on a Mach 2.0 jet, 0.9 diameters from the anode face.

The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.25 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 522.2 m/s for the plasma off case and 521.8 m/s for the plasma on case. Figure A.25 (b) is the mean

tangential component of the velocity. Figures A.25 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively.
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Figure A.26: Comparison of Plasma Effects on Second Moment Fluctuations: Case 609LINE1012

This is a continuing investigation into the effect of plasma on a Mach 2.0 jet, 0.9 diameters from the anode

face. The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.26 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 522.2 m/s for the plasma off case and 521.8 m/s for

the plasma on case. Figures A.26 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 609cn-LINE1012 for

plasma off and 609pn-LINE1012 for plasma on.
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Figure A.27: Comparison of Plasma Effects on Skewness and Kurtosis: Case 609LINE1012

This is the final series of figures on the investigation into the effect of plasma on a Mach 2.0 jet, 0.9

diameters from the anode face. The jet diameter is 11.3 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.27 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

609cn-LINE1012 for plasma off and 609pn-LINE1012 for plasma on.
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Figure A.28: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 609LINE3011

This is an investigation into the effect of plasma on a Mach 2.0 jet, 2.7 diameters from the anode face.

The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.28 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 519.1 m/s for the plasma off case and 519.0 m/s for the plasma on case. Figure A.28 (b) is the mean

tangential component of the velocity. Figures A.28 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 609cn-LINE3011

for plasma off and 609pn-LINE3011 for plasma on.
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Figure A.29: Comparison of Plasma Effects on Second Moment Fluctuations: Case 609LINE3011

This is a continuing investigation into the effect of plasma on a Mach 2.0 jet, 2.7 diameters from the anode

face. The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.29 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 519.1 m/s for the plasma off case and 519.0 m/s for

the plasma on case. Figures A.29 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 609cn-LINE3011 for

plasma off and 609pn-LINE3011 for plasma on.
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Figure A.30: Comparison of Plasma Effects on Skewness and Kurtosis: Case 609LINE3011

This is the final series of figures on the investigation into the effect of plasma on a Mach 2.0 jet, 2.7

diameters from the anode face. The jet diameter is 11.3 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.30 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

609cn-LINE3011 for plasma off and 609pn-LINE3011 for plasma on.
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Figure A.31: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 607LINE5024

This is an investigation into the effect of plasma on a Mach 2.0 jet, 4.4 diameters from the anode face.

The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.31 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 523.6 m/s for the plasma off case and 525.0 m/s for the plasma on case. Figure A.31 (b) is the mean

tangential component of the velocity. Figures A.31 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 607cnc-LINE5024

for plasma off and 607pnc-LINE5024 for plasma on.
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Figure A.32: Comparison of Plasma Effects on Second Moment Fluctuations: Case 607LINE5024

This is a continuing investigation into the effect of plasma on a Mach 2.0 jet, 4.4 diameters from the anode

face. The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.32 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 523.6 m/s for the plasma off case and 525.0 m/s for

the plasma on case. Figures A.32 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 607cnc-LINE5024 for

plasma off and 607pnc-LINE5024 for plasma on.
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Figure A.33: Comparison of Plasma Effects on Skewness and Kurtosis: Case 607LINE5024

This is the final series of figures on the investigation into the effect of plasma on a Mach 2.0 jet, 4.4

diameters from the anode face. The jet diameter is 11.3 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.33 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

607cnc-LINE5024 for plasma off and 607pnc-LINE5024 for plasma on.
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Figure A.34: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 607LINE7001

This is an investigation into the effect of plasma on a Mach 2.0 jet, 6.2 diameters from the anode face.

The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.34 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 506.9 m/s for the plasma off case and 511.7 m/s for the plasma on case. Figure A.34 (b) is the mean

tangential component of the velocity. Figures A.34 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 607cnc-LINE7001

for plasma off and 607pnc-LINE7001 for plasma on.
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Figure A.35: Comparison of Plasma Effects on Second Moment Fluctuations: Case 607LINE7001

This is a continuing investigation into the effect of plasma on a Mach 2.0 jet, 6.2 diameters from the anode

face. The jet diameter is 11.3 mm. The four plots represented above are a comparison between plasma on

in red versus plasma off in green. Figure A.35 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 506.9 m/s for the plasma off case and 511.7 m/s for

the plasma on case. Figures A.35 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 607cnc-LINE7001 for

plasma off and 607pnc-LINE7001 for plasma on.
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Figure A.36: Comparison of Plasma Effects on Skewness and Kurtosis: Case 607LINE7001

This is the final series of figures on the investigation into the effect of plasma on a Mach 2.0 jet, 6.2

diameters from the anode face. The jet diameter is 11.3 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.36 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

607cnc-LINE7001 for plasma off and 607pnc-LINE7001 for plasma on.
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Figure A.37: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 610LINE1033

This is an investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven with a

Mach 1.9 pressure ratio), 0.9 diameters from the anode face. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.37 (a) is

non-dimensionalized axial velocity. For these figures, Uo is 510.2 m/s for the plasma off case and 509.8 m/s

for the plasma on case. Figure A.37 (b) is the mean tangential component of the velocity. Figures A.37 (c)

and (d) show the Reynolds normal stresses in the axial and tangential directions, respectively.
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Figure A.38: Comparison of Plasma Effects on Second Moment Fluctuations: Case 610LINE1033

This is a continuing investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven

with a Mach 1.9 pressure ratio), 0.9 diameters from the anode face. The jet diameter is 11.3 mm. The four

plots represented above are a comparison between plasma on in red versus plasma off in green. Figure A.38

(a) is non-dimensionalized turbulent kinetic energy and panel (b) is the structural parameter a1. At this

station, Uo is 510.2 m/s for the plasma off case and 509.8 m/s for the plasma on case. Figures A.38 (c) and

(d) show the Reynolds shear stress and the correlation coefficient of Reynolds shear stress, respectively. The

case identifiers for this comparison were 610cn-LINE1033 for plasma off and 610pn-LINE1033 for plasma on.
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Figure A.39: Comparison of Plasma Effects on Skewness and Kurtosis: Case 610LINE1033

This is the final series of figures on the investigation into the effect of plasma on an overexpanded jet (Mach

2.0 jet driven with a Mach 1.9 pressure ratio), 0.9 diameters from the anode face. The jet diameter is 11.3

mm. The two plots represented above are a comparison between plasma on in red versus plasma off in green.

The plasma off case is placed on top of the plasma on case, therefore making it easier to notice small changes

between the two cases. Figure A.39 (a) (b) are the measurements of skewness and kurtosis (or flatness),

respectively. A Gaussian distribution has skewness of zero, which indicates a distribution of fluctuations is

symmetric about the mean. Positive skewness represents a shift toward the right tail (positive fluctuations),

while negative skewness is shifted toward negative fluctuations. A Gaussian distribution has kurtosis of

three, represented by the blue line. Values lower than three represent a distribution of velocity with higher

peakedness than a Gaussian distribution Conversely, values above three represent flatter distributions. The

case identifiers for this comparison were 610cn-LINE1033 for plasma off and 610pn-LINE1033 for plasma on.
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Figure A.40: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 610LINE3032

This is an investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven with a

Mach 1.9 pressure ratio), 2.7 diameters from the anode face. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.40 (a)

is non-dimensionalized axial velocity. For these figures, Uo is 507.9 m/s for the plasma off case and 507.4

m/s for the plasma on case. Figure A.40 (b) is the mean tangential component of the velocity. Figures A.40

(c) and (d) show the Reynolds normal stresses in the axial and tangential directions, respectively. The case

identifiers for this comparison were 610cn-LINE3032 for plasma off and 610pn-LINE3032 for plasma on.
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Figure A.41: Comparison of Plasma Effects on Second Moment Fluctuations: Case 610LINE3032

This is a continuing investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven

with a Mach 1.9 pressure ratio), 2.7 diameters from the anode face. The jet diameter is 11.3 mm. The four

plots represented above are a comparison between plasma on in red versus plasma off in green. Figure A.41

(a) is non-dimensionalized turbulent kinetic energy and panel (b) is the structural parameter a1. At this

station, Uo is 507.9 m/s for the plasma off case and 507.4 m/s for the plasma on case. Figures A.41 (c) and

(d) show the Reynolds shear stress and the correlation coefficient of Reynolds shear stress, respectively. The

case identifiers for this comparison were 610cn-LINE3032 for plasma off and 610pn-LINE3032 for plasma on.
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Figure A.42: Comparison of Plasma Effects on Skewness and Kurtosis: Case 610LINE3032

This is the final series of figures on the investigation into the effect of plasma on an overexpanded jet (Mach

2.0 jet driven with a Mach 1.9 pressure ratio), 2.7 diameters from the anode face. The jet diameter is 11.3

mm. The two plots represented above are a comparison between plasma on in red versus plasma off in green.

The plasma off case is placed on top of the plasma on case, therefore making it easier to notice small changes

between the two cases. Figure A.42 (a) (b) are the measurements of skewness and kurtosis (or flatness),

respectively. A Gaussian distribution has skewness of zero, which indicates a distribution of fluctuations is

symmetric about the mean. Positive skewness represents a shift toward the right tail (positive fluctuations),

while negative skewness is shifted toward negative fluctuations. A Gaussian distribution has kurtosis of

three, represented by the blue line. Values lower than three represent a distribution of velocity with higher

peakedness than a Gaussian distribution Conversely, values above three represent flatter distributions. The

case identifiers for this comparison were 610cn-LINE3032 for plasma off and 610pn-LINE3032 for plasma on.
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Figure A.43: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 608LINE5018

This is an investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven with a

Mach 1.9 pressure ratio), 4.4 diameters from the anode face. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.43 (a)

is non-dimensionalized axial velocity. For these figures, Uo is 504.7 m/s for the plasma off case and 505.3

m/s for the plasma on case. Figure A.43 (b) is the mean tangential component of the velocity. Figures A.43

(c) and (d) show the Reynolds normal stresses in the axial and tangential directions, respectively. The case

identifiers for this comparison were 608cnc-LINE5018 for plasma off and 608pnc-LINE5018 for plasma on.
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Figure A.44: Comparison of Plasma Effects on Second Moment Fluctuations: Case 608LINE5018

This is a continuing investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven

with a Mach 1.9 pressure ratio), 4.4 diameters from the anode. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.44 (a) is

non-dimensionalized turbulent kinetic energy and panel (b) is the structural parameter a1. At this station,

Uo is 504.7 m/s for the plasma off case and 505.3 m/s for the plasma on case. Figures A.44 (c) and (d)

show the Reynolds shear stress and the correlation coefficient of Reynolds shear stress, respectively. The

case identifiers were 608cnc-LINE5018 for plasma off and 608pnc-LINE5018 for plasma on.
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Figure A.45: Comparison of Plasma Effects on Skewness and Kurtosis: Case 608LINE5018

This is the final series of figures on the investigation into the effect of plasma on an overexpanded jet (Mach

2.0 jet driven with a Mach 1.9 pressure ratio), 4.4 diameters from the anode face. The jet diameter is 11.3

mm. The two plots represented above are a comparison between plasma on in red versus plasma off in green.

The plasma off case is placed on top of the plasma on case, therefore making it easier to notice small changes

between the two cases. Figure A.45 (a) (b) are the measurements of skewness and kurtosis (or flatness),

respectively. A Gaussian distribution has skewness of zero, which indicates a distribution of fluctuations is

symmetric about the mean. Positive skewness represents a shift toward the right tail (positive fluctuations),

while negative skewness is shifted toward negative fluctuations. A Gaussian distribution has kurtosis of

three, represented by the blue line. Values lower than three represent a distribution of velocity with higher

peakedness than a Gaussian distribution Conversely, values above three represent flatter distributions. The

case identifiers for this comparison were 608cnc-LINE5018 for plasma off and 608pnc-LINE5018 for plasma

on.
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Figure A.46: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 608LINE6996

This is an investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven with a

Mach 1.9 pressure ratio), 6.2 diameters from the anode face. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.46 (a)

is non-dimensionalized axial velocity. For these figures, Uo is 475.2 m/s for the plasma off case and 486.2

m/s for the plasma on case. Figure A.46 (b) is the mean tangential component of the velocity. Figures A.46

(c) and (d) show the Reynolds normal stresses in the axial and tangential directions, respectively. The case

identifiers for this comparison were 608cnc-LINE6996 for plasma off and 608pnc-LINE6996 for plasma on.
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Figure A.47: Comparison of Plasma Effects on Second Moment Fluctuations: Case 608LINE6996

This is a continuing investigation into the effect of plasma on an overexpanded jet (Mach 2.0 jet driven

with a Mach 1.9 pressure ratio), 6.2 diameters from the anode. The jet diameter is 11.3 mm. The four plots

represented above are a comparison between plasma on in red versus plasma off in green. Figure A.47 (a) is

non-dimensionalized turbulent kinetic energy and panel (b) is the structural parameter a1. At this station,

Uo is 475.2 m/s for the plasma off case and 486.2 m/s for the plasma on case. Figures A.47 (c) and (d)

show the Reynolds shear stress and the correlation coefficient of Reynolds shear stress, respectively. The

case identifiers were 608cnc-LINE6996 for plasma off and 608pnc-LINE6996 for plasma on.
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Figure A.48: Comparison of Plasma Effects on Skewness and Kurtosis: Case 608LINE6996

This is the final series of figures on the investigation into the effect of plasma on an overexpanded jet (Mach

2.0 jet driven with a Mach 1.9 pressure ratio), 6.2 diameters from the anode face. The jet diameter is 11.3

mm. The two plots represented above are a comparison between plasma on in red versus plasma off in green.

The plasma off case is placed on top of the plasma on case, therefore making it easier to notice small changes

between the two cases. Figure A.48 (a) (b) are the measurements of skewness and kurtosis (or flatness),

respectively. A Gaussian distribution has skewness of zero, which indicates a distribution of fluctuations is

symmetric about the mean. Positive skewness represents a shift toward the right tail (positive fluctuations),

while negative skewness is shifted toward negative fluctuations. A Gaussian distribution has kurtosis of

three, represented by the blue line. Values lower than three represent a distribution of velocity with higher

peakedness than a Gaussian distribution Conversely, values above three represent flatter distributions. The

case identifiers for this comparison were 608cnc-LINE6996 for plasma off and 608pnc-LINE6996 for plasma

on.
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Figure A.49: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 633LINE2229

This is an investigation into the effect of plasma on a Mach 1.4 jet, 2.3 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.49 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 404.3 m/s for the plasma off case and 403.4 m/s for the plasma on case. Figure A.49 (b) is the mean

tangential component of the velocity. Figures A.49 (c) and (d) show the Reynolds normal stresses.
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Figure A.50: Comparison of Plasma Effects on Second Moment Fluctuations: Case 633LINE2229

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 2.3 diameters from the anode

face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.50 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 404.3 m/s for the plasma off case and 403.4 m/s for

the plasma on case. Figures A.50 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 633cn-LINE2229 for

plasma off and 633pn-LINE2229 for plasma on.
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Figure A.51: Comparison of Plasma Effects on Skewness and Kurtosis: Case 633LINE2229

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 2.3

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.51 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

633cn-LINE2229 for plasma off and 633pn-LINE2229 for plasma on.
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Figure A.52: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 633LINE3227

This is an investigation into the effect of plasma on a Mach 1.4 jet, 3.4 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.52 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 404.1 m/s for the plasma off case and 403.7 m/s for the plasma on case. Figure A.52 (b) is the mean

tangential component of the velocity. Figures A.52 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 633cn-LINE3227

for plasma off and 633pn-LINE3227 for plasma on.
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Figure A.53: Comparison of Plasma Effects on Second Moment Fluctuations: Case 633LINE3227

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 3.4 diameters from the anode

face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.53 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 404.1 m/s for the plasma off case and 403.7 m/s for

the plasma on case. Figures A.53 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 633cn-LINE3227 for

plasma off and 633pn-LINE3227 for plasma on.

258



r/D [ND]

u
/

[N
D

]

-2 -1 0 1 2
-2

-1

0

1

2
Plasma On

Plasma Off

σ u3
3

x/D= 3.4

(a) Skewness, u3/σ3
u

r/D [ND]

u
/

[N
D

]

-2 -1 0 1 2
0

2

4

6

8

10

12

14
Plasma On

Plasma Off

σ u4
4

x/D= 3.4

(b) Kurtosis, u4/σ4
u

Figure A.54: Comparison of Plasma Effects on Skewness and Kurtosis: Case 633LINE3227

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 3.4

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.54 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

633cn-LINE3227 for plasma off and 633pn-LINE3227 for plasma on.
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Figure A.55: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 634LINE4789

This is an investigation into the effect of plasma on a Mach 1.4 jet, 5.0 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.55 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 402.6 m/s for the plasma off case and 401.6 m/s for the plasma on case. Figure A.55 (b) is the mean

tangential component of the velocity. Figures A.55 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 634cn-LINE4789

for plasma off and 634pn-LINE4789 for plasma on.
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Figure A.56: Comparison of Plasma Effects on Second Moment Fluctuations: Case 634LINE4789

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 5.0 diameters from the anode

face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.56 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 402.6 m/s for the plasma off case and 401.6 m/s for

the plasma on case. Figures A.56 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 634cn-LINE4789 for

plasma off and 634pn-LINE4789 for plasma on.
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Figure A.57: Comparison of Plasma Effects on Skewness and Kurtosis: Case 634LINE4789

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 5.0

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.57 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

634cn-LINE4789 for plasma off and 634pn-LINE4789 for plasma on.
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Figure A.58: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 634LINE6785

This is an investigation into the effect of plasma on a Mach 1.4 jet, 7.1 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.58 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 400.9 m/s for the plasma off case and 398.6 m/s for the plasma on case. Figure A.58 (b) is the mean

tangential component of the velocity. Figures A.58 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 634cn-LINE6785

for plasma off and 634pn-LINE6785 for plasma on.
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Figure A.59: Comparison of Plasma Effects on Second Moment Fluctuations: Case 634LINE6785

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 7.1 diameters from the anode

face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.59 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 400.9 m/s for the plasma off case and 398.6 m/s for

the plasma on case. Figures A.59 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 634cn-LINE6785 for

plasma off and 634pn-LINE6785 for plasma on.
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Figure A.60: Comparison of Plasma Effects on Skewness and Kurtosis: Case 634LINE6785

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 7.1

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.60 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

634cn-LINE6785 for plasma off and 634pn-LINE6785 for plasma on.
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Figure A.61: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 635LINE8792

This is an investigation into the effect of plasma on a Mach 1.4 jet, 9.2 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.61 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 342.1 m/s for the plasma off case and 349.6 m/s for the plasma on case. Figure A.61 (b) is the mean

tangential component of the velocity. Figures A.61 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 635cnc-LINE8792

for plasma off and 635pnc-LINE8792 for plasma on.
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Figure A.62: Comparison of Plasma Effects on Second Moment Fluctuations: Case 635LINE8792

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 9.2 diameters from the anode

face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.62 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 342.1 m/s for the plasma off case and 349.6 m/s for

the plasma on case. Figures A.62 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 635cnc-LINE8792 for

plasma off and 635pnc-LINE8792 for plasma on.

267



r/D [ND]

u
/

[N
D

]

-2 -1 0 1 2
-2

-1

0

1

2
Plasma On

Plasma Off

σ u3
3

x/D= 9.2

(a) Skewness, u3/σ3
u

r/D [ND]

u
/

[N
D

]

-2 -1 0 1 2
0

2

4

6

8

10

12

14
Plasma On

Plasma Off

σ u4
4

x/D= 9.2

(b) Kurtosis, u4/σ4
u

Figure A.63: Comparison of Plasma Effects on Skewness and Kurtosis: Case 635LINE8792

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 9.2

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.63 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

635cnc-LINE8792 for plasma off and 635pnc-LINE8792 for plasma on.
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Figure A.64: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 635LINE10787

This is an investigation into the effect of plasma on a Mach 1.4 jet, 11.3 diameters from the anode face.

The jet diameter is 9.5 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.64 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 257.5 m/s for the plasma off case and 270.9 m/s for the plasma on case. Figure A.64 (b) is the mean

tangential component of the velocity. Figures A.64 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 635cnc-LINE10787

for plasma off and 635pnc-LINE10787 for plasma on.
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Figure A.65: Comparison of Plasma Effects on Second Moment Fluctuations: Case 635LINE10787

This is a continuing investigation into the effect of plasma on a Mach 1.4 jet, 11.3 diameters from the

anode face. The jet diameter is 9.5 mm. The four plots represented above are a comparison between

plasma on in red versus plasma off in green. Figure A.65 (a) is non-dimensionalized turbulent kinetic energy

and panel (b) is the structural parameter a1. At this station, Uo is 257.5 m/s for the plasma off case

and 270.9 m/s for the plasma on case. Figures A.65 (c) and (d) show the Reynolds shear stress and the

correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this comparison were

635cnc-LINE10787 for plasma off and 635pnc-LINE10787 for plasma on.
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Figure A.66: Comparison of Plasma Effects on Skewness and Kurtosis: Case 635LINE10787

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.4 jet, 11.3

diameters from the anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison

between plasma on in red versus plasma off in green. The plasma off case is placed on top of the plasma

on case, therefore making it easier to notice small changes between the two cases. Figure A.66 (a) (b) are

the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness

of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skewness

represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

635cnc-LINE10787 for plasma off and 635pnc-LINE10787 for plasma on.
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A.6 Flow from a Tube Driven at a Mach 0.9 Pressure Ratio at 5

Torr Using Anode with Serrated Conical Feature
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Figure A.67: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 624LINE2260

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 2.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.67 (a) is non-dimensionalized axial velocity. For these figures, Uo is 247.3 m/s for the

plasma off case and 247.4 m/s for the plasma on case. Figure A.67 (b) is the mean tangential component of

the velocity. Figures A.67 (c) and (d) show the Reynolds normal stresses.
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Figure A.68: Comparison of Plasma Effects on Second Moment Fluctuations: Case 624LINE2260

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

2.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.68 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 247.3 m/s for

the plasma off case and 247.4 m/s for the plasma on case. Figures A.68 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 624cn-LINE2260 for plasma off and 624pn-LINE2260 for plasma on.
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Figure A.69: Comparison of Plasma Effects on Skewness and Kurtosis: Case 624LINE2260

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 2.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.69 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 624cn-LINE2260 for plasma off

and 624pn-LINE2260 for plasma on.
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Figure A.70: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 624LINE3253

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 3.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.70 (a) is non-dimensionalized axial velocity. For these figures, Uo is 247.3 m/s for the

plasma off case and 247.1 m/s for the plasma on case. Figure A.70 (b) is the mean tangential component

of the velocity. Figures A.70 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 624cn-LINE3253 for plasma off and

624pn-LINE3253 for plasma on.
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Figure A.71: Comparison of Plasma Effects on Second Moment Fluctuations: Case 624LINE3253

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

3.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.71 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 247.3 m/s for

the plasma off case and 247.1 m/s for the plasma on case. Figures A.71 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 624cn-LINE3253 for plasma off and 624pn-LINE3253 for plasma on.
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Figure A.72: Comparison of Plasma Effects on Skewness and Kurtosis: Case 624LINE3253

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 3.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.72 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 624cn-LINE3253 for plasma off

and 624pn-LINE3253 for plasma on.

277



r/D [ND]

U
/U

[N
D

]

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Plasma On

Plasma Off

0

x/D= 5.1

(a) Mean Axial Velocity, U/Uo

r/D [ND]

V
/U

[N
D

]

-2 -1 0 1 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Plasma On

Plasma Off

0

x/D= 5.1

(b) Mean Tangential Velocity, V/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4
Plasma On

Plasma Off

0
σ u

x/D= 5.1

(c) Fluctuating Axial Velocity, σu/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.04

0.08

0.12

0.16

0.2
Plasma On

Plasma Off

0
σ v

x/D= 5.1

(d) Fluctuating Tangential Velocity, σv/Uo

Figure A.73: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 623LINE4808

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 5.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.73 (a) is non-dimensionalized axial velocity. For these figures, Uo is 240.9 m/s for the

plasma off case and 241.8 m/s for the plasma on case. Figure A.73 (b) is the mean tangential component

of the velocity. Figures A.73 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 623cn-LINE4808 for plasma off and

623pn-LINE4808 for plasma on.
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Figure A.74: Comparison of Plasma Effects on Second Moment Fluctuations: Case 623LINE4808

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

5.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.74 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 240.9 m/s for

the plasma off case and 241.8 m/s for the plasma on case. Figures A.74 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 623cn-LINE4808 for plasma off and 623pn-LINE4808 for plasma on.
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Figure A.75: Comparison of Plasma Effects on Skewness and Kurtosis: Case 623LINE4808

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 5.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.75 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 623cn-LINE4808 for plasma off

and 623pn-LINE4808 for plasma on.

280



r/D [ND]

U
/U

[N
D

]

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Plasma On

Plasma Off

0

x/D= 7.1

(a) Mean Axial Velocity, U/Uo

r/D [ND]

V
/U

[N
D

]

-2 -1 0 1 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Plasma On

Plasma Off

0

x/D= 7.1

(b) Mean Tangential Velocity, V/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4
Plasma On

Plasma Off

0
σ u

x/D= 7.1

(c) Fluctuating Axial Velocity, σu/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.04

0.08

0.12

0.16

0.2
Plasma On

Plasma Off

0
σ v

x/D= 7.1

(d) Fluctuating Tangential Velocity, σv/Uo

Figure A.76: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 623LINE6799

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 7.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.76 (a) is non-dimensionalized axial velocity. For these figures, Uo is 234.6 m/s for the

plasma off case and 237.4 m/s for the plasma on case. Figure A.76 (b) is the mean tangential component

of the velocity. Figures A.76 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 623cn-LINE6799 for plasma off and

623pn-LINE6799 for plasma on.
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Figure A.77: Comparison of Plasma Effects on Second Moment Fluctuations: Case 623LINE6799

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

7.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.77 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 234.6 m/s for

the plasma off case and 237.4 m/s for the plasma on case. Figures A.77 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 623cn-LINE6799 for plasma off and 623pn-LINE6799 for plasma on.
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Figure A.78: Comparison of Plasma Effects on Skewness and Kurtosis: Case 623LINE6799

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 7.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.78 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 623cn-LINE6799 for plasma off

and 623pn-LINE6799 for plasma on.
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Figure A.79: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 618LINE8800

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 9.2 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.79 (a) is non-dimensionalized axial velocity. For these figures, Uo is 206.5 m/s for the

plasma off case and 212.6 m/s for the plasma on case. Figure A.79 (b) is the mean tangential component

of the velocity. Figures A.79 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 618cnc-LINE8800 for plasma off and

618pnc-LINE8800 for plasma on.
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Figure A.80: Comparison of Plasma Effects on Second Moment Fluctuations: Case 618LINE8800

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

9.2 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.80 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 206.5 m/s for

the plasma off case and 212.6 m/s for the plasma on case. Figures A.80 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 618cnc-LINE8800 for plasma off and 618pnc-LINE8800 for plasma on.
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Figure A.81: Comparison of Plasma Effects on Skewness and Kurtosis: Case 618LINE8800

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 9.2 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.81 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 618cnc-LINE8800 for plasma

off and 618pnc-LINE8800 for plasma on.
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Figure A.82: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 618LINE10812

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 0.9 isentropic pressure ratio, 11.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.82 (a) is non-dimensionalized axial velocity. For these figures, Uo is 170.6 m/s for the

plasma off case and 184.3 m/s for the plasma on case. Figure A.82 (b) is the mean tangential component

of the velocity. Figures A.82 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 618cnc-LINE10812 for plasma off and

618pnc-LINE10812 for plasma on.
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Figure A.83: Comparison of Plasma Effects on Second Moment Fluctuations: Case 618LINE10812

This is a continuing investigation into the effect of plasma on a Mach 0.9 isentropic pressure ratio,

11.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.83 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 170.6 m/s for

the plasma off case and 184.3 m/s for the plasma on case. Figures A.83 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 618cnc-LINE10812 for plasma off and 618pnc-LINE10812 for plasma on.
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Figure A.84: Comparison of Plasma Effects on Skewness and Kurtosis: Case 618LINE10812

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 0.9 isentropic pressure ratio, 11.4 diameters from the

anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma

on in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.84 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 618cnc-LINE10812 for plasma

off and 618pnc-LINE10812 for plasma on.
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A.7 Flow from a Tube Driven at a Mach 1.4 Pressure Ratio at 5

Torr Using Anode with Serrated Conical Feature

r/D [ND]

U
/U

[N
D

]

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Plasma On

Plasma Off

0

x/D= 2.4

(a) Mean Axial Velocity, U/Uo

r/D [ND]

V
/U

[N
D

]

-2 -1 0 1 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Plasma On

Plasma Off

0

x/D= 2.4

(b) Mean Tangential Velocity, V/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4
Plasma On

Plasma Off

0
σ u

x/D= 2.4

(c) Fluctuating Axial Velocity, σu/Uo

r/D [ND]

/U
[N

D
]

-2 -1 0 1 2
0

0.04

0.08

0.12

0.16

0.2
Plasma On

Plasma Off

0
σ v

x/D= 2.4

(d) Fluctuating Tangential Velocity, σv/Uo

Figure A.85: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 626LINE2260

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 2.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.85 (a) is non-dimensionalized axial velocity. For these figures, Uo is 386.7 m/s for the

plasma off case and 386.0 m/s for the plasma on case. Figure A.85 (b) is the mean tangential component of

the velocity. Figures A.85 (c) and (d) show the Reynolds normal stresses.
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Figure A.86: Comparison of Plasma Effects on Second Moment Fluctuations: Case 626LINE2260

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

2.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.86 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 386.7 m/s for

the plasma off case and 386.0 m/s for the plasma on case. Figures A.86 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 626cn-LINE2260 for plasma off and 626pn-LINE2260 for plasma on.
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Figure A.87: Comparison of Plasma Effects on Skewness and Kurtosis: Case 626LINE2260

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 2.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.87 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 626cn-LINE2260 for plasma off

and 626pn-LINE2260 for plasma on.
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Figure A.88: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 626LINE3253

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 3.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.88 (a) is non-dimensionalized axial velocity. For these figures, Uo is 388.6 m/s for the

plasma off case and 388.2 m/s for the plasma on case. Figure A.88 (b) is the mean tangential component

of the velocity. Figures A.88 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 626cn-LINE3253 for plasma off and

626pn-LINE3253 for plasma on.
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Figure A.89: Comparison of Plasma Effects on Second Moment Fluctuations: Case 626LINE3253

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

3.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.89 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 388.6 m/s for

the plasma off case and 388.2 m/s for the plasma on case. Figures A.89 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 626cn-LINE3253 for plasma off and 626pn-LINE3253 for plasma on.
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Figure A.90: Comparison of Plasma Effects on Skewness and Kurtosis: Case 626LINE3253

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 3.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.90 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 626cn-LINE3253 for plasma off

and 626pn-LINE3253 for plasma on.
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Figure A.91: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 621LINE4808

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 5.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.91 (a) is non-dimensionalized axial velocity. For these figures, Uo is 379.9 m/s for the

plasma off case and 380.3 m/s for the plasma on case. Figure A.91 (b) is the mean tangential component

of the velocity. Figures A.91 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 621cn-LINE4808 for plasma off and

621pn-LINE4808 for plasma on.
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Figure A.92: Comparison of Plasma Effects on Second Moment Fluctuations: Case 621LINE4808

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

5.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.92 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 379.9 m/s for

the plasma off case and 380.3 m/s for the plasma on case. Figures A.92 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 621cn-LINE4808 for plasma off and 621pn-LINE4808 for plasma on.
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Figure A.93: Comparison of Plasma Effects on Skewness and Kurtosis: Case 621LINE4808

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 5.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.93 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 621cn-LINE4808 for plasma off

and 621pn-LINE4808 for plasma on.
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Figure A.94: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 621LINE6799

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 7.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.94 (a) is non-dimensionalized axial velocity. For these figures, Uo is 346.8 m/s for the

plasma off case and 356.2 m/s for the plasma on case. Figure A.94 (b) is the mean tangential component

of the velocity. Figures A.94 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 621cn-LINE6799 for plasma off and

621pn-LINE6799 for plasma on.
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Figure A.95: Comparison of Plasma Effects on Second Moment Fluctuations: Case 621LINE6799

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

7.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.95 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 346.8 m/s for

the plasma off case and 356.2 m/s for the plasma on case. Figures A.95 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 621cn-LINE6799 for plasma off and 621pn-LINE6799 for plasma on.
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Figure A.96: Comparison of Plasma Effects on Skewness and Kurtosis: Case 621LINE6799

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 7.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.96 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 621cn-LINE6799 for plasma off

and 621pn-LINE6799 for plasma on.
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Figure A.97: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 617LINE8814

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 9.3 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.97 (a) is non-dimensionalized axial velocity. For these figures, Uo is 295.7 m/s for the

plasma off case and 312.1 m/s for the plasma on case. Figure A.97 (b) is the mean tangential component

of the velocity. Figures A.97 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 617cnc-LINE8814 for plasma off and

617pnc-LINE8814 for plasma on.
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Figure A.98: Comparison of Plasma Effects on Second Moment Fluctuations: Case 617LINE8814

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

9.3 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.98 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 295.7 m/s for

the plasma off case and 312.1 m/s for the plasma on case. Figures A.98 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 617cnc-LINE8814 for plasma off and 617pnc-LINE8814 for plasma on.
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Figure A.99: Comparison of Plasma Effects on Skewness and Kurtosis: Case 617LINE8814

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 9.3 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.99 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 617cnc-LINE8814 for plasma

off and 617pnc-LINE8814 for plasma on.
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Figure A.100: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 617LINE10809

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.4 isentropic pressure ratio, 11.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.100 (a) is non-dimensionalized axial velocity. For these figures, Uo is 230.1 m/s for the

plasma off case and 250.5 m/s for the plasma on case. Figure A.100 (b) is the mean tangential component

of the velocity. Figures A.100 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 617cnc-LINE10809 for plasma off and

617pnc-LINE10809 for plasma on.
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Figure A.101: Comparison of Plasma Effects on Second Moment Fluctuations: Case 617LINE10809

This is a continuing investigation into the effect of plasma on a Mach 1.4 isentropic pressure ratio,

11.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.101 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 230.1 m/s for

the plasma off case and 250.5 m/s for the plasma on case. Figures A.101 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 617cnc-LINE10809 for plasma off and 617pnc-LINE10809 for plasma on.
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Figure A.102: Comparison of Plasma Effects on Skewness and Kurtosis: Case 617LINE10809

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.4 isentropic pressure ratio, 11.4 diameters from the

anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma

on in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.102 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 617cnc-LINE10809 for plasma

off and 617pnc-LINE10809 for plasma on.
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Figure A.103: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 627LINE2260

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 2.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.103 (a) is non-dimensionalized axial velocity. For these figures, Uo is 459.6 m/s for the

plasma off case and 459.1 m/s for the plasma on case. Figure A.103 (b) is the mean tangential component

of the velocity. Figures A.103 (c) and (d) show the Reynolds normal stresses.
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Figure A.104: Comparison of Plasma Effects on Second Moment Fluctuations: Case 627LINE2260

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

2.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.104 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 459.6 m/s for

the plasma off case and 459.1 m/s for the plasma on case. Figures A.104 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 627cn-LINE2260 for plasma off and 627pn-LINE2260 for plasma on.
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Figure A.105: Comparison of Plasma Effects on Skewness and Kurtosis: Case 627LINE2260

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 2.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.105 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 627cn-LINE2260 for plasma off

and 627pn-LINE2260 for plasma on.
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Figure A.106: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 627LINE3253

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 3.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.106 (a) is non-dimensionalized axial velocity. For these figures, Uo is 449.0 m/s for the

plasma off case and 448.6 m/s for the plasma on case. Figure A.106 (b) is the mean tangential component

of the velocity. Figures A.106 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 627cn-LINE3253 for plasma off and

627pn-LINE3253 for plasma on.
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Figure A.107: Comparison of Plasma Effects on Second Moment Fluctuations: Case 627LINE3253

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

3.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.107 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 449.0 m/s for

the plasma off case and 448.6 m/s for the plasma on case. Figures A.107 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 627cn-LINE3253 for plasma off and 627pn-LINE3253 for plasma on.
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Figure A.108: Comparison of Plasma Effects on Skewness and Kurtosis: Case 627LINE3253

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 3.4 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.108 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 627cn-LINE3253 for plasma off

and 627pn-LINE3253 for plasma on.
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Figure A.109: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 620LINE4808

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 5.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.109 (a) is non-dimensionalized axial velocity. For these figures, Uo is 439.6 m/s for the

plasma off case and 438.8 m/s for the plasma on case. Figure A.109 (b) is the mean tangential component

of the velocity. Figures A.109 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 620cn-LINE4808 for plasma off and

620pn-LINE4808 for plasma on.
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Figure A.110: Comparison of Plasma Effects on Second Moment Fluctuations: Case 620LINE4808

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

5.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.110 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 439.6 m/s for

the plasma off case and 438.8 m/s for the plasma on case. Figures A.110 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 620cn-LINE4808 for plasma off and 620pn-LINE4808 for plasma on.
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Figure A.111: Comparison of Plasma Effects on Skewness and Kurtosis: Case 620LINE4808

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 5.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.111 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 620cn-LINE4808 for plasma off

and 620pn-LINE4808 for plasma on.
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Figure A.112: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 620LINE6799

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 7.1 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.112 (a) is non-dimensionalized axial velocity. For these figures, Uo is 444.5 m/s for the

plasma off case and 444.4 m/s for the plasma on case. Figure A.112 (b) is the mean tangential component

of the velocity. Figures A.112 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 620cn-LINE6799 for plasma off and

620pn-LINE6799 for plasma on.
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Figure A.113: Comparison of Plasma Effects on Second Moment Fluctuations: Case 620LINE6799

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

7.1 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.113 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 444.5 m/s for

the plasma off case and 444.4 m/s for the plasma on case. Figures A.113 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 620cn-LINE6799 for plasma off and 620pn-LINE6799 for plasma on.
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Figure A.114: Comparison of Plasma Effects on Skewness and Kurtosis: Case 620LINE6799

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 7.1 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.114 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 620cn-LINE6799 for plasma off

and 620pn-LINE6799 for plasma on.
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Figure A.115: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 616LINE8814

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 9.3 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.115 (a) is non-dimensionalized axial velocity. For these figures, Uo is 387.2 m/s for the

plasma off case and 385.9 m/s for the plasma on case. Figure A.115 (b) is the mean tangential component

of the velocity. Figures A.115 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 616cnc-LINE8814 for plasma off and

616pnc-LINE8814 for plasma on.
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Figure A.116: Comparison of Plasma Effects on Second Moment Fluctuations: Case 616LINE8814

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

9.3 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.116 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 387.2 m/s for

the plasma off case and 385.9 m/s for the plasma on case. Figures A.116 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 616cnc-LINE8814 for plasma off and 616pnc-LINE8814 for plasma on.
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Figure A.117: Comparison of Plasma Effects on Skewness and Kurtosis: Case 616LINE8814

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 9.3 diameters from the anode

face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma on

in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.117 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 616cnc-LINE8814 for plasma

off and 616pnc-LINE8814 for plasma on.
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Figure A.118: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 616LINE10809

This is an investigation into the effect of plasma on jet created by developing flow in a constant-diameter

tube driven at a Mach 1.9 isentropic pressure ratio, 11.4 diameters from the anode face. The jet diameter

is 9.5 mm. The four plots represented above are a comparison between plasma on in red versus plasma off

in green. Figure A.118 (a) is non-dimensionalized axial velocity. For these figures, Uo is 314.9 m/s for the

plasma off case and 313.2 m/s for the plasma on case. Figure A.118 (b) is the mean tangential component

of the velocity. Figures A.118 (c) and (d) show the Reynolds normal stresses in the axial and tangential

directions, respectively. The case identifiers for this comparison were 616cnc-LINE10809 for plasma off and

616pnc-LINE10809 for plasma on.
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Figure A.119: Comparison of Plasma Effects on Second Moment Fluctuations: Case 616LINE10809

This is a continuing investigation into the effect of plasma on a Mach 1.9 isentropic pressure ratio,

11.4 diameters from the anode face. The jet diameter is 9.5 mm. The four plots represented above are a

comparison between plasma on in red versus plasma off in green. Figure A.119 (a) is non-dimensionalized

turbulent kinetic energy and panel (b) is the structural parameter a1. At this station, Uo is 314.9 m/s for

the plasma off case and 313.2 m/s for the plasma on case. Figures A.119 (c) and (d) show the Reynolds

shear stress and the correlation coefficient of Reynolds shear stress, respectively. The case identifiers for this

comparison were 616cnc-LINE10809 for plasma off and 616pnc-LINE10809 for plasma on.
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Figure A.120: Comparison of Plasma Effects on Skewness and Kurtosis: Case 616LINE10809

This is the final series of figures on the investigation into the effect of plasma on jet created by developing

flow in a constant-diameter tube driven at a Mach 1.9 isentropic pressure ratio, 11.4 diameters from the

anode face. The jet diameter is 9.5 mm. The two plots represented above are a comparison between plasma

on in red versus plasma off in green. The plasma off case is placed on top of the plasma on case, therefore

making it easier to notice small changes between the two cases. Figure A.120 (a) (b) are the measurements

of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has skewness of zero, which

indicates a distribution of fluctuations is symmetric about the mean. Positive skewness represents a shift

toward the right tail (positive fluctuations), while negative skewness is shifted toward negative fluctuations.

A Gaussian distribution has kurtosis of three, represented by the blue line. Values lower than three represent

a distribution of velocity with higher peakedness than a Gaussian distribution Conversely, values above three

represent flatter distributions. The case identifiers for this comparison were 616cnc-LINE10809 for plasma

off and 616pnc-LINE10809 for plasma on.
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Figure A.121: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 614LINE1331

This is an investigation into the effect of plasma on a Mach 1.1 jet, 0.8 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.121 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 347.1 m/s for the plasma off case and 347.0 m/s for the plasma on case. Figure A.121 (b) is the mean

tangential component of the velocity. Figures A.121 (c) and (d) show the Reynolds normal stresses.
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Figure A.122: Comparison of Plasma Effects on Second Moment Fluctuations: Case 614LINE1331

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 0.8 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.122 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 347.1 m/s for the plasma off case and 347.0 m/s for

the plasma on case. Figures A.122 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 614cn-LINE1331 for

plasma off and 614pn-LINE1331 for plasma on.
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Figure A.123: Comparison of Plasma Effects on Skewness and Kurtosis: Case 614LINE1331

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 0.8

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.123 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

614cn-LINE1331 for plasma off and 614pn-LINE1331 for plasma on.
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Figure A.124: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 614LINE2831

This is an investigation into the effect of plasma on a Mach 1.1 jet, 1.8 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.124 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 346.1 m/s for the plasma off case and 345.8 m/s for the plasma on case. Figure A.124 (b) is the mean

tangential component of the velocity. Figures A.124 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 614cn-LINE2831

for plasma off and 614pn-LINE2831 for plasma on.
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Figure A.125: Comparison of Plasma Effects on Second Moment Fluctuations: Case 614LINE2831

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 1.8 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.125 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 346.1 m/s for the plasma off case and 345.8 m/s for

the plasma on case. Figures A.125 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 614cn-LINE2831 for

plasma off and 614pn-LINE2831 for plasma on.
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Figure A.126: Comparison of Plasma Effects on Skewness and Kurtosis: Case 614LINE2831

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 1.8

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.126 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

614cn-LINE2831 for plasma off and 614pn-LINE2831 for plasma on.
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Figure A.127: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 606LINE4706

This is an investigation into the effect of plasma on a Mach 1.1 jet, 3.0 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.127 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 343.7 m/s for the plasma off case and 343.0 m/s for the plasma on case. Figure A.127 (b) is the mean

tangential component of the velocity. Figures A.127 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 606cnc-LINE4706

for plasma off and 606pnc-LINE4706 for plasma on.
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Figure A.128: Comparison of Plasma Effects on Second Moment Fluctuations: Case 606LINE4706

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 3.0 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.128 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 343.7 m/s for the plasma off case and 343.0 m/s for

the plasma on case. Figures A.128 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 606cnc-LINE4706 for

plasma off and 606pnc-LINE4706 for plasma on.
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Figure A.129: Comparison of Plasma Effects on Skewness and Kurtosis: Case 606LINE4706

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 3.0

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.129 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

606cnc-LINE4706 for plasma off and 606pnc-LINE4706 for plasma on.
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Figure A.130: Comparison of Plasma Effects on Mean Velocity and Fluctuations: Case 606LINE6701

This is an investigation into the effect of plasma on a Mach 1.1 jet, 4.3 diameters from the anode face.

The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in red

versus plasma off in green. Figure A.130 (a) is non-dimensionalized axial velocity. For these figures, Uo

is 338.9 m/s for the plasma off case and 338.5 m/s for the plasma on case. Figure A.130 (b) is the mean

tangential component of the velocity. Figures A.130 (c) and (d) show the Reynolds normal stresses in the

axial and tangential directions, respectively. The case identifiers for this comparison were 606cnc-LINE6701

for plasma off and 606pnc-LINE6701 for plasma on.
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Figure A.131: Comparison of Plasma Effects on Second Moment Fluctuations: Case 606LINE6701

This is a continuing investigation into the effect of plasma on a Mach 1.1 jet, 4.3 diameters from the anode

face. The jet diameter is 15.7 mm. The four plots represented above are a comparison between plasma on in

red versus plasma off in green. Figure A.131 (a) is non-dimensionalized turbulent kinetic energy and panel

(b) is the structural parameter a1. At this station, Uo is 338.9 m/s for the plasma off case and 338.5 m/s for

the plasma on case. Figures A.131 (c) and (d) show the Reynolds shear stress and the correlation coefficient

of Reynolds shear stress, respectively. The case identifiers for this comparison were 606cnc-LINE6701 for

plasma off and 606pnc-LINE6701 for plasma on.
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Figure A.132: Comparison of Plasma Effects on Skewness and Kurtosis: Case 606LINE6701

This is the final series of figures on the investigation into the effect of plasma on a Mach 1.1 jet, 4.3

diameters from the anode face. The jet diameter is 15.7 mm. The two plots represented above are a com-

parison between plasma on in red versus plasma off in green. The plasma off case is placed on top of the

plasma on case, therefore making it easier to notice small changes between the two cases. Figure A.132 (a)

(b) are the measurements of skewness and kurtosis (or flatness), respectively. A Gaussian distribution has

skewness of zero, which indicates a distribution of fluctuations is symmetric about the mean. Positive skew-

ness represents a shift toward the right tail (positive fluctuations), while negative skewness is shifted toward

negative fluctuations. A Gaussian distribution has kurtosis of three, represented by the blue line. Values

lower than three represent a distribution of velocity with higher peakedness than a Gaussian distribution

Conversely, values above three represent flatter distributions. The case identifiers for this comparison were

606cnc-LINE6701 for plasma off and 606pnc-LINE6701 for plasma on.
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Appendix B

Archival of Spectroscopy Based
Temperature Measurements

This appendix contains a series of tables of rotational (Tr) and vibrational (Tv) temperatures of images of line

spectroscopy of the plasma emissions in the second positive system of diatomic Nitrogen. The temperatures

were derived from model matching the recorded spectra.

Each table shows the rotational and vibrational temperatures measured in a grid across the electrode

gap, G. The top portion of the table is devoted to rotational temperature, Tr, while the bottom section

reports Tv, vibrational temperature. The position from left to right corresponds to jet diameters of vertical

displacement from the centerline of the jet. The radial positions are negative for the positions measured

vertically below the centerline and positive above the jet center. Each row in the table corresponds to a

different location along the gap, beginning near the anode face and progressing downstream towards the

cathode. The distance from the electrode (x/D) for each row of temperature measurements is the far left

hand column. In some cases, data was taken at only one streamwise location. In those instances, the table

was abbreviated with rotational temperatures in the top row, directly over the vibrational temperatures and

the location x/D was moved into the upper left corner.

Table B.1: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 0.7 Jet at 9 Torr (Case A)

x/D r/D
3.2 -1.2 -0.9 -0.6 -0.2 0.1 0.4 0.7 1.0 1.3

Tr [K] 392 338 353 371 478 395 298 358 401
Tv [K] 2917 3072 3169 3323 3380 3435 3365 3079 2839
Note: Jet Exit Diameter D is 20.8 mm and Gap Distance G is 75.8 mm.
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Table B.2: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 1.1 Jet at 9 Torr (Case B)

Tr [K] r/D
x/D -1.6 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.4 1.8
0.6 392 325 469 520 0 376 344 401 387
1.9 461 455 330 401 498 406 394 382 408
3.1 399 306 312 386 478 407 394 383 400
4.4 369 320 337 428 443 366 350 448 459

Tv [K] r/D
x/D -1.6 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.4 1.8
0.6 3639 3604 3585 3978 0 3895 3439 3223 3014
1.9 3188 3111 3193 3286 3421 3366 3153 3027 2948
3.1 2994 3065 3173 3278 3349 3354 3170 3072 2977
4.4 3055 3227 3316 3430 3539 3568 3399 3094 3063

Note: Jet Exit Diameter D is 15.6 mm and Gap Distance G is 79.1 mm.

Table B.3: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 1.1 Jet at 9 Torr with Modified Anode (Case B’)

Tr [K] r/D
x/D -1.6 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.4 1.8
0.4 0 0 525 434 370 397 499 444 424
1.7 0 0 556 525 578 434 373 449 554
3.0 460 400 348 431 525 441 357 405 431
4.3 374 324 344 433 451 369 351 447 380

Tv [K] r/D
x/D -1.6 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.4 1.8
0.4 0 0 3572 3292 3488 3506 3725 3405 3108
1.7 0 0 3625 3660 3632 3418 3262 3168 3273
3.0 3149 3164 3264 3372 3416 3399 3235 3085 3036
4.3 2991 3152 3246 3344 3465 3494 3321 3032 3036

Note: Jet Exit Diameter D is 15.7 mm and Gap Distance G is 76.7 mm.

Table B.4: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 2.0 Jet at 8 Torr (Case C)

x/D r/D
5.8 -2.2 -1.6 -1.0 -0.4 0.1 0.7 1.3 1.9 2.5

Tr [K] 394 416 298 376 475 395 381 391 409
Tv [K] 3005 3151 3325 3446 3502 3519 3336 3118 3049
Note: Jet Exit Diameter D is 11.3 mm and Gap Distance G is 75.8 mm.

Table B.5: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Overexpanded Jet at 8 Torr (Case D)

x/D r/D
5.8 -2.2 -1.6 -1.0 -0.4 0.1 0.7 1.3 1.9 2.5

Tr [K] 398 416 301 381 482 398 382 397 413
Tv [K] 3033 3180 3346 3463 3507 3535 3346 3116 3057
Note: Jet Exit Diameter D is 11.3 mm and Gap Distance G is 75.8 mm.
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Table B.6: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 1.4 Jet at 5 Torr (Case E)

x/D r/D
7.0 -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9

Tr [K] 436 385 340 433 527 373 428 423 450
Tv [K] 3235 3359 3503 3636 3690 3732 3455 3256 3129
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 77.0 mm.

Table B.7: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 0.9 Jet at 5 Torr (Case F)

x/D r/D
11.4 -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9

Tr [K] 343 309 395 419 527 453 436 451 481
Tv [K] 3172 3312 3408 3588 3676 3728 3533 3280 3092
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 118.3 mm.

Table B.8: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 1.4 Jet at 5 Torr (Case G)

Tr [K] r/D
x/D -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9
7.2 389 417 361 435 452 388 377 446 461
9.3 411 439 394 489 505 439 422 478 485

11.4 360 374 389 491 501 422 344 434 443
Tv [K] r/D

x/D -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9
7.2 3205 3231 3346 3430 3541 3587 3345 3165 3091
9.3 3279 3307 3463 3622 3720 3704 3475 3297 3219

11.4 3248 3404 3505 3628 3719 3755 3612 3254 3187
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 118.3 mm.

Table B.9: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 1.9 Jet at 5 Torr (Case H)

x/D r/D
11.4 -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9

Tr [K] 345 306 322 405 499 415 331 418 435
Tv [K] 3231 3375 3481 3599 3614 3644 3590 3233 3173
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 118.3 mm.
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Table B.10: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Highly Underexpanded Jet at 8 Torr (Case U)

Tr [K] r/D
x/D -3.0 -2.2 -1.4 -0.6 0.2 1.0 1.8 2.6 3.4
1.0 299 388 292 168 157 382 454 432 368
1.6 257 384 283 173 148 387 449 349 351
2.2 307 384 279 424 456 372 368 434 368
4.6 304 387 334 417 437 368 364 429 368
7.1 405 426 307 396 405 332 394 410 345

Tv [K] r/D
x/D -3.0 -2.2 -1.4 -0.6 0.2 1.0 1.8 2.6 3.4
1.0 3126 3176 3313 3660 3756 3573 3296 3192 3059
1.6 2986 3056 3189 3595 3626 3447 3193 3100 2935
2.2 2986 2999 3144 3268 3464 3386 3190 3015 2911
4.6 2958 2979 3108 3213 3425 3337 3164 3016 2972
7.1 3065 3227 3405 3532 3669 3644 3368 3133 3145

Note: Jet Exit Diameter D is 8.2 mm and Gap Distance G is 68.0 mm.

Table B.11: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 0.9 Jet at 5 Torr, with Decreased Gap Dis-
tance of 76.5 mm

x/D r/D
7.1 -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9

Tr [K] 464 415 437 472 501 454 509 539 519
Tv [K] 3084 3210 3317 3486 3674 3762 3516 3275 3158
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 77.4 mm.

Table B.12: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 1.4 Jet at 5 Torr, with Decreased Gap Dis-
tance of 76.5 mm

Tr [K] r/D
x/D -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9
2.8 0 330 340 411 357 351 373 445 392
4.9 426 283 343 439 364 375 370 453 387
7.0 412 311 326 418 434 369 362 439 451

Tv [K] r/D
x/D -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9
2.8 0 3227 3308 3379 3511 3447 3271 3160 3154
4.9 3030 3164 3226 3302 3437 3407 3228 3076 3004
7.0 3128 3300 3430 3568 3660 3643 3474 3206 3056

Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 76.5 mm.
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Table B.13: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Effective Mach 1.9 Jet at 5 Torr, with Decreased Gap Dis-
tance of 76.5 mm

x/D r/D
7.0 -2.6 -1.9 -1.2 -0.5 0.2 0.9 1.5 2.2 2.9

Tr [K] 444 396 341 439 450 379 449 385 400
Tv [K] 3126 3301 3444 3543 3611 3632 3404 3186 3170
Note: Jet Exit Diameter D is 9.5 mm and Gap Distance G is 76.5 mm.

Table B.14: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the Mach 2.0 Jet at 10 Torr

x/D r/D
1.4 -2.2 -1.6 -1.0 -0.4 0.1 0.7 1.3 1.9 2.5

Tr [K] 325 285 296 375 317 323 313 390 403
Tv [K] 2887 2983 3048 3147 3300 3268 3137 2888 2705
Note: Jet Exit Diameter D is 11.3 mm and Gap Distance G is 26.2 mm.

Table B.15: Rotational and Vibrational Temperatures Taken by Line Spec-
troscopy of the α-Discharge No-Flow Plasma Field

Tr [K] r/D
x/D -2.2 -1.6 -1.0 -0.4 0.1 0.7 1.3 1.9 2.5
0.7 430 393 356 438 518 451 443 506 451
1.3 454 434 462 485 553 498 563 472 483
2.2 480 526 542 552 651 659 592 586 614
3.1 493 535 559 580 675 679 592 579 584
4.0 478 525 545 560 659 665 653 563 571
4.9 483 526 554 573 595 593 590 582 579
5.8 464 472 405 492 595 501 496 514 584

Tv [K] r/D
x/D -2.2 -1.6 -1.0 -0.4 0.1 0.7 1.3 1.9 2.5
0.7 4108 4248 4424 4532 4584 4600 4326 4066 3938
1.3 3706 3804 3926 4088 4166 4121 3827 3756 3653
2.2 3612 3663 3829 3963 3891 3805 3759 3711 3702
3.1 3638 3685 3841 3989 3959 3875 3760 3646 3557
4.0 3652 3715 3863 4018 4012 3916 3727 3667 3543
4.9 3643 3697 3853 3997 4041 3966 3776 3635 3530
5.8 4166 4273 4503 4597 4561 4601 4393 4143 3935

Note: Jet Exit Diameter D is 11.3 mm and Gap Distance G is 75.1 mm.
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